Advanced Cryptography - Midterm Exam

Serge Vaudenay

18.4.2019

- duration: 1h45
- any document allowed
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will not answer any technical question during the exam
- readability and style of writing will be part of the grade

1 On Various Equivalent Indistinguishability Notions

In this exercise, we consider two games $\Gamma_{0}\left(1^{s}\right)$ and $\Gamma_{1}\left(1^{s}\right)$ which can be played by an adversary \mathcal{A}. We assume that Γ_{0} and Γ_{1} are such that they output c if and only if \mathcal{A} outputs a final message c. We define

$$
\begin{aligned}
\operatorname{Adv}_{1}^{\mathcal{A}}(s) & =\operatorname{Pr}\left[\Gamma_{1}\left(1^{s}, \mathcal{A}\right) \rightarrow 1\right]-\operatorname{Pr}\left[\Gamma_{0}\left(1^{s}, \mathcal{A}\right) \rightarrow 1\right] \\
\operatorname{Adv}_{2}^{\mathcal{A}}(s) & =\left|\operatorname{Pr}\left[\Gamma_{1}\left(1^{s}, \mathcal{A}\right) \rightarrow 1\right]-\operatorname{Pr}\left[\Gamma_{0}\left(1^{s}, \mathcal{A}\right) \rightarrow 1\right]\right| \\
\operatorname{Adv}_{3}^{\mathcal{A}}(s) & =\frac{1}{2}-\operatorname{Pr}\left[\Gamma^{\prime}\left(1^{s}, \mathcal{A}\right) \rightarrow 1\right]
\end{aligned}
$$

where Γ^{\prime} is a bit-guessing game defined by
Game $\Gamma^{\prime}\left(1^{s}, \mathcal{A}\right)$:
: picks $b \in\{0,1\}$ uniformly at random
if $b=0$ then
simulate $\Gamma_{0}\left(1^{s}, \mathcal{A}\right)$ which returns c
else
simulate $\Gamma_{1}\left(1^{s}, \mathcal{A}\right)$ which returns c
end if
$c^{\prime}=1_{c=1} \quad \triangleright$ this forces c^{\prime} to be 0 or 1
return $1_{b=c^{\prime}}$
Given a positive function $g(s)$, we define three notions of g-indistinguishability by
g - IND_{i} : "for any p.p.t. algorithm $\mathcal{A}, \exists s_{0} \quad \forall s \geq s_{0} \quad \operatorname{Adv}_{i}^{\mathcal{A}}(s) \leq g(s) "$
Q. 1 Prove that g - IND_{1} is equivalent to $g-\mathrm{IND}_{2}$.

Warning: there are two directions in an equivalence!
Q. 2 Prove that g - NND_{1} is equivalent to $\frac{g}{2}-\mathrm{IND}_{3}$.

2 Goldwasser-Micali Cryptosystem

We define the GM cryptosystem over the message space $\{0,1\}$ as follows:
Gen $\left(1^{s}\right)$:
generate two different prime numbers p and q of s bits
$N=p q$
pick $x \in \mathbf{Z}_{N}^{*}$ such that $(x / p)=(x / q)=-1$
$\mathrm{pk}=(x, N), \mathrm{sk}=p$
return pk and sk
Enc(pk, b):
6: parse pk $=(x, N)$
pick $r \in \mathbf{Z}_{N}^{*}$ uniformly at random
$\mathrm{ct}=r^{2} x^{b} \bmod N$
return ct
Dec(sk, ct):
10: set $p=$ sk
11: $\sigma=(\mathrm{ct} / p)$
12: return $1_{\sigma=-1}$
Q. 1 Prove that GM is public-key cryptosystem and that it is correct.

Hint: triple-check all what you must prove in this question!
Q. 2 Prove that the key-recovery problem (KR-CPA) is equivalent to some well-known problem.
Q. 3 We define the following game which depends on a bit b :

Game $\Gamma_{b}\left(1^{s}, \mathcal{A}\right)$:
1: $\operatorname{Gen}\left(1^{s}\right) \rightarrow(\mathrm{pk}, \mathrm{sk})$
2: $\operatorname{Enc}(\mathrm{pk}, b) \rightarrow \mathrm{ct}$
3: $\mathcal{A}(\mathrm{pk}, \mathrm{ct}) \rightarrow c$
4: return c
We say that GM is Γ-secure if for every p.p.t. $\mathcal{A}, \operatorname{Pr}\left[\Gamma_{1}\left(1^{s}, \mathcal{A}\right) \rightarrow 1\right]-\operatorname{Pr}\left[\Gamma_{0}\left(1^{s}, \mathcal{A}\right) \rightarrow 1\right]$ is a negligible function of s.
Prove that IND-CPA security and Γ-security are equivalent for GM.
Q. 4 We define the following game which depends on a bit b :

Game $\operatorname{QR}_{b}\left(1^{s}, \mathcal{A}\right)$:
generate two different prime numbers p and q of s bits
$N=p q$
pick $x \in \mathbf{Z}_{N}^{*}$ such that $(x / p)=(x / q)=(-1)^{b}$
$\mathcal{A}(x, N) \rightarrow c$
return c
We define $\operatorname{Adv}^{\mathcal{A}}(s)=\operatorname{Pr}\left[\mathrm{QR}_{1}\left(1^{s}, \mathcal{A}\right) \rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{QR}_{0}\left(1^{s}, \mathcal{A}\right) \rightarrow 1\right]$. We say that the QR problem is hard if for every p.p.t. $\mathcal{A}, \operatorname{Adv}^{\mathcal{A}}$ is a negligible function.
Prove that the IND-CPA security of GM implies the QR hardness.
Q. 5 Prove that the IND-CPA security of GM is equivalent to the hardness of QR.

3 A Weird Signcryption

We consider the plain RSA cryptosystem (RSA.Gen, RSA.Enc, RSA.Dec) and a digital signature scheme (DS.Gen, DS.Sign, DS.Ver). We construct a signcryption scheme as follows:
SC.Gen:
1: RSA.Gen \rightarrow (ek, dk)
2: DS.Gen \rightarrow (sk, vk)
3: pubk $\leftarrow(\mathrm{ek}, \mathrm{vk})$
4: privk $\leftarrow(\mathrm{dk}, \mathrm{sk})$
: return (pubk, privk)
SC.Send $\left(\right.$ pubk $_{B}$, privk $\left._{A}, \mathrm{pt}\right)$:
6: parse pubk $_{B}=\left(\mathrm{ek}_{B}, \mathrm{vk}_{B}\right)$
7: parse privk ${ }_{A}=\left(\mathrm{dk}_{A}, \mathrm{sk}_{A}\right)$
$\mathrm{ct} \leftarrow \operatorname{RSA} . \operatorname{Enc}\left(\mathrm{ek}_{B}, \mathrm{pt}\right)$
9: $\sigma \leftarrow \mathrm{DS} . \operatorname{Sign}\left(\mathrm{sk}_{A}, \mathrm{ct}\right)$
10: return (ct, σ)
so that A can send (ct, σ) to B. Once B obtains pt , he can show proof $=\left(\mathrm{vk}_{A}, \mathrm{ek}_{B}, \mathrm{ct}, \sigma, \mathrm{pt}\right)$ as a proof that A sent pt. We call this property non-repudiation.
Q. 1 Describe the algorithm using $\left(\operatorname{pubk}_{A}, \operatorname{privk}_{B}\right)$ to receive (ct, σ) and compute pt , as well as the algorithm to verify the proof.
Q. 2 Given $\left(\mathrm{vk}_{A}, \mathrm{ct}, \sigma\right)$ such that $\mathrm{DS} . \operatorname{Ver}\left(\mathrm{vk}_{A}, \mathrm{ct}, \sigma\right)$ is true and given an arbitrary pt, prove that we can easily find ek such that $\left(\mathrm{vk}_{A}, \mathrm{ek}, \mathrm{ct}, \sigma, \mathrm{pt}\right)$ is a valid proof.
Q. 3 Propose a fix to this problem so that we have non-repudiation.

