Advanced Cryptography — Midterm Exam

Serge Vaudenay

18.4.2019

- duration: 1h45
- any document allowed
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will <u>**not**</u> answer any technical question during the exam
- readability and style of writing will be part of the grade

1 On Various Equivalent Indistinguishability Notions

In this exercise, we consider two games $\Gamma_0(1^s)$ and $\Gamma_1(1^s)$ which can be played by an adversary \mathcal{A} . We assume that Γ_0 and Γ_1 are such that they output c if and only if \mathcal{A} outputs a final message c. We define

$$\begin{aligned} \mathsf{Adv}_1^{\mathcal{A}}(s) &= \Pr[\Gamma_1(1^s, \mathcal{A}) \to 1] - \Pr[\Gamma_0(1^s, \mathcal{A}) \to 1] \\ \mathsf{Adv}_2^{\mathcal{A}}(s) &= |\Pr[\Gamma_1(1^s, \mathcal{A}) \to 1] - \Pr[\Gamma_0(1^s, \mathcal{A}) \to 1]| \\ \mathsf{Adv}_3^{\mathcal{A}}(s) &= \frac{1}{2} - \Pr[\Gamma'(1^s, \mathcal{A}) \to 1] \end{aligned}$$

where \varGamma' is a bit-guessing game defined by

Game $\Gamma'(1^s, \mathcal{A})$:

- 1: picks $b \in \{0, 1\}$ uniformly at random
- 2: **if** b = 0 **then**
- 3: simulate $\Gamma_0(1^s, \mathcal{A})$ which returns c
- 4: else
- 5: simulate $\Gamma_1(1^s, \mathcal{A})$ which returns c

```
6: end if
```

```
7: c' = 1_{c=1}
```

```
8: return 1_{b=c'}
```

 \triangleright this forces c' to be 0 or 1

Given a positive function g(s), we define three notions of g-indistinguishability by

g-IND_i: "for any p.p.t. algorithm $\mathcal{A}, \exists s_0 \quad \forall s \geq s_0 \quad \mathsf{Adv}_i^{\mathcal{A}}(s) \leq g(s)$ "

- **Q.1** Prove that g-IND₁ is equivalent to g-IND₂.
- Warning: there are two directions in an equivalence!
- **Q.2** Prove that g-IND₁ is equivalent to $\frac{g}{2}$ -IND₃.

2 Goldwasser-Micali Cryptosystem

We define the GM cryptosystem over the message space $\{0, 1\}$ as follows: Gen (1^s) :

- 1: generate two different prime numbers p and q of s bits
- $2: \ N = pq$
- 3: pick $x \in \mathbf{Z}_N^*$ such that (x/p) = (x/q) = -1
- 4: pk = (x, N), sk = p
- 5: return pk and sk

Enc(pk, b):

- 6: parse $\mathsf{pk} = (x, N)$
- 7: pick $r \in \mathbf{Z}_N^*$ uniformly at random
- 8: $\mathsf{ct} = r^2 x^b \mod N$
- 9: return ct

 $\mathsf{Dec}(\mathsf{sk},\mathsf{ct})$:

- 10: set $p = \mathsf{sk}$
- 11: $\sigma = (\mathsf{ct}/p)$
- 12: return $1_{\sigma=-1}$
- **Q.1** Prove that GM is public-key cryptosystem and that it is correct.

Hint: triple-check all what you must prove in this question!

- **Q.2** Prove that the key-recovery problem (KR-CPA) is equivalent to some well-known problem.
- **Q.3** We define the following game which depends on a bit b:

Game $\Gamma_b(1^s, \mathcal{A})$:

- 1: $\operatorname{Gen}(1^s) \to (\mathsf{pk}, \mathsf{sk})$
- 2: $\mathsf{Enc}(\mathsf{pk}, b) \to \mathsf{ct}$
- 3: $\mathcal{A}(\mathsf{pk},\mathsf{ct}) \to c$
- 4: return c

We say that GM is Γ -secure if for every p.p.t. \mathcal{A} , $\Pr[\Gamma_1(1^s, \mathcal{A}) \to 1] - \Pr[\Gamma_0(1^s, \mathcal{A}) \to 1]$ is a negligible function of s.

Prove that IND-CPA security and \varGamma -security are equivalent for GM.

Q.4 We define the following game which depends on a bit b:

```
Game \mathsf{QR}_b(1^s, \mathcal{A}):
```

1: generate two different prime numbers p and q of s bits

- 2: N = pq
- 3: pick $x \in \mathbf{Z}_N^*$ such that $(x/p) = (x/q) = (-1)^b$
- 4: $\mathcal{A}(x,N) \to c$
- 5: return c

We define $\mathsf{Adv}^{\mathcal{A}}(s) = \Pr[\mathsf{QR}_1(1^s, \mathcal{A}) \to 1] - \Pr[\mathsf{QR}_0(1^s, \mathcal{A}) \to 1]$. We say that the QR problem is hard if for every p.p.t. \mathcal{A} , $\mathsf{Adv}^{\mathcal{A}}$ is a negligible function.

Prove that the IND-CPA security of GM implies the QR hardness.

Q.5 Prove that the IND-CPA security of GM is equivalent to the hardness of QR.

3 A Weird Signcryption

We consider the plain RSA cryptosystem (RSA.Gen, RSA.Enc, RSA.Dec) and a digital signature scheme (DS.Gen, DS.Sign, DS.Ver). We construct a *signcryption* scheme as follows:

SC.Gen:

- 1: $\mathsf{RSA}.\mathsf{Gen} \to (\mathsf{ek},\mathsf{dk})$
- 2: DS.Gen \rightarrow (sk, vk)
- 3: $\mathsf{pubk} \leftarrow (\mathsf{ek}, \mathsf{vk})$
- 4: privk $\leftarrow (\mathsf{dk},\mathsf{sk})$
- 5: return (pubk, privk)
- SC.Send(pubk_B, privk_A, pt):
 - 6: parse $\mathsf{pubk}_B = (\mathsf{ek}_B, \mathsf{vk}_B)$
- 7: parse $\mathsf{privk}_A = (\mathsf{dk}_A, \mathsf{sk}_A)$
- 8: ct $\leftarrow \mathsf{RSA}.\mathsf{Enc}(\mathsf{ek}_B,\mathsf{pt})$
- 9: $\sigma \leftarrow \mathsf{DS}.\mathsf{Sign}(\mathsf{sk}_A,\mathsf{ct})$
- 10: return (ct, σ)

so that A can send (ct, σ) to B. Once B obtains pt , he can show $\mathsf{proof} = (\mathsf{vk}_A, \mathsf{ek}_B, \mathsf{ct}, \sigma, \mathsf{pt})$ as a proof that A sent pt . We call this property *non-repudiation*.

- **Q.1** Describe the algorithm using $(\mathsf{pubk}_A, \mathsf{privk}_B)$ to receive (ct, σ) and compute pt , as well as the algorithm to verify the proof.
- **Q.2** Given $(\mathsf{vk}_A, \mathsf{ct}, \sigma)$ such that $\mathsf{DS}.\mathsf{Ver}(\mathsf{vk}_A, \mathsf{ct}, \sigma)$ is true and given an arbitrary pt , prove that we can easily find ek such that $(\mathsf{vk}_A, \mathsf{ek}, \mathsf{ct}, \sigma, \mathsf{pt})$ is a valid proof.
- Q.3 Propose a fix to this problem so that we have non-repudiation.

▷ generate a key pair for a user
▷ encryption key and decryption key
▷ signing key and verification key
▷ public key of user
▷ private key of user

 \triangleright user A sends a message to user B