
Advanced Cryptography — Midterm Exam

Solution

Serge Vaudenay

18.4.2019

– duration: 1h45
– any document allowed
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade

The exam grade follows a linear scale in which each question has the same weight.

1 On Various Equivalent Indistinguishability Notions

In this exercise, we consider two games Γ0(1
s) and Γ1(1

s) which can be played by an
adversary A. We assume that Γ0 and Γ1 are such that they output c if and only if A
outputs a final message c. We define

AdvA1 (s) = Pr[Γ1(1
s,A)→ 1]− Pr[Γ0(1

s,A)→ 1]

AdvA2 (s) = |Pr[Γ1(1
s,A)→ 1]− Pr[Γ0(1

s,A)→ 1]|

AdvA3 (s) =
1

2
− Pr[Γ ′(1s,A)→ 1]

where Γ ′ is a bit-guessing game defined by

Game Γ ′(1s,A):
1: picks b ∈ {0, 1} uniformly at random
2: if b = 0 then
3: simulate Γ0(1

s,A) which returns c
4: else
5: simulate Γ1(1

s,A) which returns c
6: end if
7: c′ = 1c=1 ▷ this forces c′ to be 0 or 1
8: return 1b=c′

Given a positive function g(s), we define three notions of g-indistinguishability by

g-INDi: “for any p.p.t. algorithm A, ∃s0 ∀s ≥ s0 AdvAi (s) ≤ g(s)”

Q.1 Prove that g-IND1 is equivalent to g-IND2.
Warning: there are two directions in an equivalence!

Clearly, if |f(s)| ≤ g(s), then f(s) ≤ g(s). Since AdvA2 = |AdvA1 |, we deduce
that g-IND2 =⇒ g-IND1.
Given A, we define a new adversary B which essentially simulates A until A
returns c, in which case B returns 1c ̸=1. Clearly, Adv

B
1 = −AdvA1 .

If g-IND1 holds, then AdvB1 must be lower than g(s) for sufficiently large s,
which means that −AdvA1 is lower than g(s) for sufficiently large s.
If f(s) ≤ g(s) and f ′(s) ≤ g(s), then max(f(s), f ′(s)) ≤ g(s). Since AdvA2 =
max(AdvA1 ,−AdvA1), then AdvA2 (s) ≤ g(s) for large enough s. Hence, g-IND2

holds as well.
Feedback from the exam. Some students made mistakes with inequalities
such as “since Adv(s) ≤ g(s) and g(s) is positive, we deduce |Adv(s)| ≤ g(s)”.

Q.2 Prove that g-IND1 is equivalent to g
2
-IND3.

We have that

Pr[Γ ′ → 1] = (1− Pr[Γ0 → 1]) Pr[b = 0] + Pr[Γ1 → 1] Pr[b = 1] =
1

2
− 1

2
AdvA1

hence AdvA3 = 1
2
AdvA1 . We deduce that g-IND1 and g

2
-IND3 are equivalent.

Feedback from the exam. A majority of students wrote proofs by contra-
position and things like “assume it is not *-secure so we have an adversary
playing the *-game with non-negligible advantage”. First of all, writing “non-
negligible” must be avoided because in the literature, there is a notion of what
non-negligible means, and it is not the negation of being negligible... Better
write “not negligible”. Second, manipulating negation of the negligible notion
leads to big logical mistakes in a vast majority of cases so it is safer to avoid
to negate it. The reason of mistakes comes from the negligible notion being
defined by a chain of different quantifiers: f(s) is negligible if for all c > 0, we
have f(s) = O(1

sc
). This is equivalent to

∀c > 0 ∃s0 ∀s > s0 f(s) <
1

sc

The negation of it is

∃c > 0 ∀s0 ∃s > s0 f(s) ≥ 1

sc

Writing f(s) > O(1
sc
) does not make much sense and would not lead to the

above meaning almost surely. It is advised to avoid proofs by contraposition. In
all cases we have seen in the exam, the proof could be written without negations.

2 Goldwasser-Micali Cryptosystem

We define the GM cryptosystem over the message space {0, 1} as follows:
Gen(1s):
1: generate two different prime numbers p and q of s bits
2: N = pq
3: pick x ∈ Z∗

N such that (x/p) = (x/q) = −1
4: pk = (x,N), sk = p
5: return pk and sk

Enc(pk, b):
6: parse pk = (x,N)
7: pick r ∈ Z∗

N uniformly at random
8: ct = r2xb mod N
9: return ct

Dec(sk, ct):
10: set p = sk
11: σ = (ct/p)
12: return 1σ=−1

Q.1 Prove that GM is public-key cryptosystem and that it is correct.

Hint: triple-check all what you must prove in this question!

We first observe that we have a tuple (Gen, {0, 1},Enc,Dec) as in the definition
of a PKC. We can see that the algorithms are polynomially bounded. We can
see that Dec is deterministic. What remains to be proven is the correctness
property.
Assume that we generated p, q, N , x as specified and that we encrypted some
b with r as specified. During decryption, we have

σ =

(
ct

p

)
=

(
r2xb

p

)
=

(
r

p

)2(
x

p

)b

= (−1)b

Hence, decryption returns 1(−1)b=−1 = b. The PKC is correct.
Feedback from the exam. Almost all students made correctness right but a
really small minority scored all points in this question. Almost everyone forgot
to say that decryption is deterministic and many forgot to say that algorithms
are polynomially bounded.

Q.2 Prove that the key-recovery problem (KR-CPA) is equivalent to some well-known prob-
lem.

Here is the KR-CPA game:

Game KR-CPA(1s)
1: Gen(1s)→ (pk, sk)
2: A(pk)→ k
3: return 1k=sk

It means that given x and N , A must recover p. Clearly, recovering p implies
factoring N completely since we can easily divide N by p.
Similarly, the factoring problem is:

Game FACT(1s)
1: generate two different prime numbers p and q of s bits
2: N = pq
3: A(N)→ F
4: return 1F={p,q}

Factoring N with probability ρ implies recovering p, at least with probability
ρ
2
. Hence, if KR-CPA is hard, ρ

2
is negligible, hence ρ is negligible. Hence,

KR-CPA security implies the hardness of factoring.
Conversely, if factoring is hard, let us take a KR-CPA adversary A with ad-
vantage ρ. We can pick a random x such that (x/N) = +1. With probability
1
2
, (x,N) forms a public key with correct distribution and we can feed A with

(x,N) and check if it returns the factorization of N . If (x,N) does not form
a valid public key, it is not clear what happens. Nevertheless, it factors with
probability at least ρ

2
. If factoring is hard, ρ

2
is negligible, hence ρ is negligible.

Hence, the hardness of factoring implies KR-CPA security.
Finally, KR-CPA security is equivalent to the hardness of factoring.
Feedback from the exam. Some students did not see there is an x to pro-
vide to the KR-CPA oracle. Many students did this question correct but forgot
to discuss what happens if the x which is provided is an incorrect public key
(namely: if it is a quadratic residue).

Q.3 We define the following game which depends on a bit b:

Game Γb(1
s,A):

1: Gen(1s)→ (pk, sk)
2: Enc(pk, b)→ ct
3: A(pk, ct)→ c
4: return c

We say that GM is Γ -secure if for every p.p.t. A, Pr[Γ1(1
s,A)→ 1]−Pr[Γ0(1

s,A)→ 1]
is a negligible function of s.

Prove that IND-CPA security and Γ -security are equivalent for GM.

The message domain is {0, 1}. IND-CPA adversaries proposing the pair of
messages to be m0 = m1 are not interesting because their advantage is always
0. Any adversary proposing the pair m0 = 1 and m1 = 0 has the opposite
advantage of the one doing the same but proposing m0 = 0 and m1 = 1. Hence,
we can focus without loss of generality on an adversary proposing m0 = 0 and
m1 = 1. The IND-CPA game becomes equivalent to Γ .
More precisely, any adversary A playing the Γ -game can be transformed into
an adversary B playing the IND-CPA game with same advantage: in the first
part of B, the adversary proposes the challenge plaintexts (0, 1). In the second
part of B, he does exactly like A. Conversely, any adversary B playing the
IND-CPA game can be transformed into an adversary A playing the Γ -game:

Adversary A(pk, ct)
1: B1(pk)→ (pt0, pt1, st)
2: if pt0 = pt1 then

3: pick z
$
∈ {0, 1}

4: else
5: B2(pk, ct)→ z0
6: z ← z0 ⊕ pt0 ▷ flip z if challenge plaintexts were (1, 0)
7: end if

We let Euv be the event [pt0 = u, pt1 = v]. For any u, we have
Pr[INDCPA1(1

s,B) → 1|Euu] = Pr[INDCPA0(1
s,B) → 1|Euu] because the out-

come is independent from b (the encrypted plaintext is always u, no matter the
value of b). We have Pr[Γ1(1

s,A)→ 1|Euu] = Pr[Γ0(1
s,A)→ 1|Euu] =

1
2
. Fur-

thermore, we have that for all b, Pr[Γb(1
s,A)→ 1|E01] = Pr[INDCPAb(1

s,B)→
1|E01] and Pr[Γb(1

s,A)→ 1|E10] = 1−Pr[INDCPA1−b(1
s,B)→ 1|E10]. Hence,

AdvA

= Pr[Γ1(1
s,A)→ 1]− Pr[Γ0(1

s,A)→ 1]

=
∑
u,v

(Pr[Γ1(1
s,A)→ 1|Euv]− Pr[Γ0(1

s,A)→ 1|Euv]) Pr[Eu,v]

=
∑
u,v

(Pr[INDCPA1(1
s,B)→ 1|Euv]− Pr[INDCPA0(1

s,B)→ 1|Euv]) Pr[Eu,v]

= AdvB

Feedback from the exam. The difficulty in this question is to write down
the reduction correctly. We must explain why an IND-CPA adversary giving
equal challenge plaintexts would be “stupid” (students said so without explain-
ing). Actually, “stupidity” should clearly come from the math by having a null
advantage. We must also explain that if the adversary gives (1, 0) instead of
(0, 1), we can just flip the answer to reduce to a Γ adversary in all cases.

Q.4 We define the following game which depends on a bit b:

Game QRb(1
s,A):

1: generate two different prime numbers p and q of s bits
2: N = pq
3: pick x ∈ Z∗

N such that (x/p) = (x/q) = (−1)b
4: A(x,N)→ c
5: return c

We define AdvA(s) = Pr[QR1(1
s,A) → 1] − Pr[QR0(1

s,A) → 1]. We say that the QR
problem is hard if for every p.p.t. A, AdvA is a negligible function.
Prove that the IND-CPA security of GM implies the QR hardness.

Let consider a QR adversary A. Following QR, A has input (y,N).
We define B(x,N, y) = A(y,N) to play the Γ game. In Γ , we have y =
r2xb which has the same distribution as x in the QR game. Hence, A and B
have the same advantage. If GM is IND-CPA secure, then it is Γ -secure, thus
the advantage of B must be negligible. We deduce that the advantage of A is
negligible as well. Hence, QR is hard.
Feedback from the exam. Again, we had many proofs by contraposition
which should be avoided. The only trick was to use Γ -security (hence the result
from last question). Not using it implies redoing somehow the equivalence in
the last question.

Q.5 Prove that the IND-CPA security of GM is equivalent to the hardness of QR.

What remains to be proven is that if the QR problem is hard, then GM is IND-
CPA secure. We know that IND-CPA security and Γ security are equivalent.
So, we can just prove the Γ security under the assumption that QR is hard.
Let consider a Γ adversary A. Following Γ , A has input (x,N, r2xb). We define
a QR adversary as follows:

B(y,N):
1: pick a random x ∈ Z∗

N such that (x/N) = +1
2: A(x,N, y)→ c
3: return c

Let E be the event that x is not a quadratic residue. When E holds (this
happens with probability 1

2
), then (x,N, y) has the same distribution at in the

Γ game. When ¬E holds, the distribution is the same as in the following QR
adversary:

C(y,N):
1: pick a random r ∈ Z∗

N

2: x = r2 mod N
3: A(x,N, y)→ c
4: return c

Hence, Pr[QRb(1
s,B) → 1] = 1

2
Pr[Γb(1

s,A) → 1] + 1
2
Pr[QRb(1

s, C) → 1].

Therefore, AdvB = 1
2
AdvA+ 1

2
AdvC. If QR is hard, we know that both AdvB and

AdvC are negligible. Hence, AdvA is negligible as well.

3 A Weird Signcryption

We consider the plain RSA cryptosystem (RSA.Gen,RSA.Enc,RSA.Dec) and a digital sig-
nature scheme (DS.Gen,DS.Sign,DS.Ver). We construct a signcryption scheme as follows:

SC.Gen: ▷ generate a key pair for a user
1: RSA.Gen→ (ek, dk) ▷ encryption key and decryption key
2: DS.Gen→ (sk, vk) ▷ signing key and verification key
3: pubk← (ek, vk) ▷ public key of user
4: privk← (dk, sk) ▷ private key of user
5: return (pubk, privk)

SC.Send(pubkB, privkA, pt): ▷ user A sends a message to user B
6: parse pubkB = (ekB, vkB)
7: parse privkA = (dkA, skA)
8: ct← RSA.Enc(ekB, pt)
9: σ ← DS.Sign(skA, ct)

10: return (ct, σ)

so that A can send (ct, σ) to B. Once B obtains pt, he can show proof = (vkA, ekB, ct, σ, pt)
as a proof that A sent pt. We call this property non-repudiation.

Q.1 Describe the algorithm using (pubkA, privkB) to receive (ct, σ) and compute pt, as well
as the algorithm to verify the proof.

To receive the message, we use:

SC.Receive(pubkA, privkB, ct, σ):
1: parse pubkA = (ekA, vkA)
2: parse privkB = (dkB, skB)
3: if DS.Ver(vkA, ct, σ) then return ⊥
4: pt← RSA.Dec(dkB, ct)
5: return pt

To verify the proof:

SC.Verify(vkA, ekB, ct, σ, pt):
1: if DS.Ver(vkA, ct, σ) then return reject
2: if RSA.Enc(ekB, pt) ̸= ct then return reject
3: return accept

Feedback from the exam. Several students wrote a SC.Receive which al-
ways returns the decryption of the ciphertext no matter if the signature is
correct. They missed the point of having the ciphertext authenticated. It is
not a good idea to return any information is the message is not well formed.
Many students did not understand what they were supposed to do: they gave
as SC.Receive a decryption algorithm and as SC.Verify a signature verification
algorithm.

Q.2 Given (vkA, ct, σ) such that DS.Ver(vkA, ct, σ) is true and given an arbitrary pt, prove
that we can easily find ek such that (vkA, ek, ct, σ, pt) is a valid proof.

ek consists of an exponent e and a modulus N . We can fix e arbitrarily and
set N = pte − ct. We obtain RSA.Enc(ek, pt) = ct. Hence, (vkA, ek, ct, σ, pt) is
a valid proof.

Q.3 Propose a fix to this problem so that we have non-repudiation.

One way could be to sign (ct, pubkB) instead of ct alone. This way, the adver-
sary would not be able to change ek a posteriori.
Feedback from the exam. Some students proposed to sign the plaintext in-
stead of the ciphertext. One problem is that with the currently proposed struc-
ture, the signature is given in clear, which means that it leaks information
about the plaintext. Clearly, we have no IND-CPA security this way. We could
instead sign the plaintext and encrypt the plaintext and its signature. But there
may be reasons why would like message reception to start with a signature ver-
ification. For instance, it could avoid malicious access to the decryption key
and protect more against side channels.

