Advanced Cryptography - Final Exam Solution

Serge Vaudenay

3.8.2019

- duration: 3h
- any document allowed
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will not answer any technical question during the exam
- readability and style of writing will be part of the grade

The exam grade follows a linear scale in which each question has the same weight.

1 Security of Key Agreement

We consider a key agreement scheme defined by

- one PPT algorithm setup $\left(1^{s}\right) \rightarrow \mathrm{pp}$ which generates public parameters pp ;
- two probabilistic polynomially bounded interactive machines A and B with input pp and producing a secret output K (denoted by K_{A} for A and by K_{B} for $\left.B\right)$.

Correctness implies that the following game outputs 1 with probability 1.
1: $\operatorname{setup}\left(1^{s}\right) \rightarrow \mathrm{pp}$
2: make $A(\mathrm{pp})$ and $B(\mathrm{pp})$ interact with each other and output K_{A} and K_{B}
3: output $1_{K_{A}=K_{B}}$
Q. 1 Give a formal definition for the security against key recovery under passive attacks.

```
Given an adversary }\mathcal{A}\mathrm{ , we consider the following game with security parameter
s.
    1: setup(1s)}->\textrm{pp
    2: make }A(\textrm{pp})\mathrm{ and }B(\textrm{pp})\mathrm{ interact with each other and output }\mp@subsup{K}{A}{}\mathrm{ and }\mp@subsup{K}{B}{}\mathrm{ ;
    define transcript as the list of exchanged messages
    3: run }\mathcal{A}(\textrm{pp},\mathrm{ transcript) }->
    output 1 1 
The protocol is secure against key recovery under passive attack if for any PPT
adversary \mathcal{A}, the above game returns 1 with negligible probability.
```

Q. 2 Formalize how to define the Diffie-Hellman protocol under this setting.

```
In the Diffie-Hellman protocol, we assume that pp is of form \(\mathrm{pp}=(q, g)\) where
\(g\) generates a (multiplicatively denoted) group of order \(q\). The algorithm \(A\)
works as follows:
    1: pick \(a \in \mathbf{Z}_{q}^{*}\) at random
    \(\mathrm{pk}_{A} \leftarrow g^{a}\)
    send \(\mathrm{pk}_{A}\)
    receive \(\mathrm{pk}_{B}\)
    if \(\mathrm{pk}_{B} \notin\langle g\rangle-\{1\}\) then abort
    \(K \leftarrow \mathrm{pk}_{B}^{a}\)
    return \(K\) (private output)
The algorithm \(B\) works as follows:
    1: pick \(b \in \mathbf{Z}_{q}^{*}\) at random
    2: \(\mathrm{pk}_{B} \leftarrow g^{b}\)
    receive \(\mathrm{pk}_{A}\)
    if \(\mathrm{pk}_{A} \notin\langle g\rangle-\{1\}\) then abort
    send \(\mathrm{pk}_{B}\)
    6: \(K \leftarrow \mathrm{pk}_{A}^{b}\)
    7: return \(K\) (private output)
```

Q. 3 Formally prove that the Diffie-Hellman protocol is secure in the sense of the previous question if and only if the computational Diffie-Hellman problem is hard.

```
By plugging the algorithms \(A\) and \(B\) in the security game, we obtain
    \(\operatorname{setup}\left(1^{s}\right) \rightarrow(q, g)\)
    pick \(a \in \mathbf{Z}_{q}^{*}\) at random
    \(\mathrm{pk}_{A} \leftarrow g^{a}\)
    pick \(b \in \mathbf{Z}_{q}^{*}\) at random
    \(\mathrm{pk}_{B} \leftarrow g^{b}\)
    if \(\mathrm{pk}_{A} \notin\langle g\rangle-\{1\}\) then abort
    \(K_{B} \leftarrow \mathrm{pk}_{A}^{b}\)
    if \(\mathrm{pk}_{B} \notin\langle g\rangle-\{1\}\) then abort
    \(K_{A} \leftarrow \mathrm{pk}_{B}^{a}\)
    \(\operatorname{run} \mathcal{A}\left(\mathrm{pp}, \mathrm{pk}_{A}, \mathrm{pk}_{B}\right) \rightarrow K\)
    output \(1_{K=K_{A}=K_{B}}\)
Clearly, the two if are useless and we always have \(K_{A}=K_{B}=g^{a b}\). Hence, the
game simplifies to
    \(\operatorname{setup}\left(1^{s}\right) \rightarrow(q, g)\)
    pick \(a \in \mathbf{Z}_{q}^{*}\) at random
    pick \(b \in \mathbf{Z}_{q}^{*}\) at random
    run \(\mathcal{A}\left(q, g, g^{a}, g^{b}\right) \rightarrow K\)
    output \(1_{K=g^{a b}}\)
which is the computational Diffie-Hellman problem (CDH). An adversary an-
swers 1 in the security game with the same probability as in the CDH game.
```

Q. 4 We now consider security against Alice's key recovery under active attacks as defined by the following game:
1: $\operatorname{setup}\left(1^{s}\right) \rightarrow \mathrm{pp}$
$\mathrm{st}_{A} \leftarrow \mathrm{pp}$, finished $_{A} \leftarrow$ false
$\mathrm{st}_{B} \leftarrow \mathrm{pp}$, finished ${ }_{B} \leftarrow$ false
$\mathrm{OA}(x)$:
6: if finished ${ }_{A}$ then return
run $\mathcal{A}^{\mathrm{OA}, \mathrm{OB}}(\mathrm{pp}) \rightarrow K$
output $1_{K=K_{A}}$ and finished ${ }_{A}$
7: $\mathrm{st}_{A} \leftarrow\left(\mathrm{st}_{A}, x\right)$
8: run $A\left(\right.$ st $\left._{A}\right)$ to get private output st_{A} and next message y
9: if y non-final then return y
10: finished ${ }_{A} \leftarrow$ true
11: $K_{A} \leftarrow \mathrm{st}_{A}$
12: return y

And the same for oracle OB. Prove that the Diffie-Hellman protocol is insecure in this sense.

```
The man-in-the-middle attack is breaking the protocol. We consider the adver-
sary:
Input: (q,g)
    1: pick c \in Z्Zq
    OA() }->\mp@subsup{\textrm{pk}}{A}{
    OA}(\mp@subsup{g}{}{c}
    return pk c
(Note that the interaction with Bob is useless in this security model.)
```

Q. 5 Based on some attacks seen in the course, formalize security against key recovery under active attacks making $K_{A}=K_{B}$. Prove that Diffie-Hellman is secure by assuming that the problem defined by the following game is hard:

```
\(\operatorname{setup}\left(1^{s}\right) \rightarrow \mathrm{pp}=(q, g)\)
pick \(x, y \in \mathbf{Z}_{q}^{*}\)
\(\mathcal{B}\left(\mathrm{pp}, g^{x}, g^{y}\right) \rightarrow(u, v, w)\)
return \(1_{u^{x}=v^{y}=w}\) and \(u, v, w \in\langle g\rangle\) and \(w \neq 1\)
```

where g generates $\langle g\rangle$ of order q, with neutral element 1 .
The output of the security game is now $1_{K=K_{A}}=K_{B}$ and finished A_{A} and finished ${ }_{B}$. We want to prove that the protocol is secure. Let \mathcal{A} by an adversary against the protocol. We define \mathcal{B} as follows:
$\mathcal{B}(\mathrm{pp}, X, Y)$:
1: run $\mathcal{A}^{\mathrm{OA}, \mathrm{OB}}(\mathrm{pp}) \rightarrow w$ and simulate the oracles as follows:
OA(): simulate A choosing X
next $\mathrm{OA}(x)$: set $v \leftarrow x$
$\mathrm{OB}(x)$: set $u \leftarrow x$ and simulate B choosing Y
2: return (u, v, w)
When \mathcal{B} is put in its game, the simulation of the selection of the public keys of A and B are perfect. It is also clear that the winning conditions in both games are equivalent. So, they have the same advantage. If the game that \mathcal{B} plays is hard, then it must be the case that \mathcal{A} has a negligible advantage.

2 Advantage Amplification

Let $X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}$ be $2 n$ independent Boolean variables. We assume that X_{1}, \ldots, X_{n} are identically distributed and that Y_{1}, \ldots, Y_{n} are identically distributed. We assume that the statistical distance between the distributions of X_{i} and Y_{j} is ε. Given distinguisher, i.e. a Boolean algorithm \mathcal{A} (with unbounded complexity), we define $X=\mathcal{A}\left(X_{1}, \ldots, X_{n}\right)$ and $Y=\mathcal{A}\left(Y_{1}, \ldots, Y_{n}\right)$. We are interested in \mathcal{A} which maximizes the statistical distance between the distributions of X and Y. We denote by d the statistical distance and we identify random variables by their distributions when computing distances, by abuse of notation.
Q. 1 Prove that $d(X, Y)=d\left(\left(X_{1}, \ldots, X_{n}\right),\left(Y_{1}, \ldots, Y_{n}\right)\right)$.

We know from the course that for any \mathcal{A}

$$
d(X, Y) \leq d\left(\left(X_{1}, \ldots, X_{n}\right),\left(Y_{1}, \ldots, Y_{n}\right)\right)
$$

and equality can be reached by using the likelihood ratio. We actually known that

$$
\mathcal{A}\left(z_{1}, \ldots, z_{n}\right)=1_{\operatorname{Pr}\left[X_{1}=z_{1}, \ldots, X_{n}=z_{n}\right]<\operatorname{Pr}\left[Y_{1}=z_{1}, \ldots, Y_{n}=z_{n}\right]}
$$

reaches the equality case.
Q. 2 Assume that $\operatorname{Pr}\left[X_{i}=1\right]=0$.
Q.2a Give the distributions of X_{i} and Y_{j}.

We have $\operatorname{Pr}\left[X_{i}=1\right]=0$ and $\operatorname{Pr}\left[X_{i}=0\right]=1$. Due to the statistical distance of ε, we have $\operatorname{Pr}\left[Y_{j}=1\right]=\varepsilon$ and $\operatorname{Pr}\left[Y_{j}=0\right]=1-\varepsilon$.
Q.2b Compute $d(X, Y)$ in terms of ε and n.

We compute the statistical distance by regrouping all $\left(z_{1}, \ldots, z_{n}\right)$ by their Hamming weight.

$$
\begin{aligned}
d(X, Y) & =\frac{1}{2} \sum_{z_{1}, \ldots, z_{n}}\left|\operatorname{Pr}\left[X_{1}=z_{1}, \ldots, X_{n}=z_{n}\right]-\operatorname{Pr}\left[Y_{1}=z_{1}, \ldots, Y_{n}=z_{n}\right]\right| \\
& =\frac{1}{2}\left(1-(1-\varepsilon)^{n}\right)+\frac{1}{2} \sum_{h=1}^{n}\binom{n}{h} \varepsilon^{h}(1-\varepsilon)^{n-h} \\
& =1-(1-\varepsilon)^{n}
\end{aligned}
$$

In the sum, only the $(0, \ldots, 0)$ case makes the first probability nonzero. This is the $h=0$ case.
Q.2c Give an asymptotic equivalent of the minimal n such that $d(X, Y) \geq \frac{1}{2}$ in terms of ε, when $\varepsilon \rightarrow 0$.

$$
1-(1-\varepsilon)^{n} \geq \frac{1}{2} \text { is equivalent to } n \geq-\frac{\ln 2}{\ln (1-\varepsilon)} \text {. So, the minimal } n \text { is } n \sim \frac{\ln 2}{\varepsilon} \text {. }
$$

Q. 3 Assume now that $\operatorname{Pr}\left[X_{i}=1\right]=\frac{1}{2}(1-\varepsilon)$ and $\operatorname{Pr}\left[Y_{i}=1\right]=\frac{1}{2}(1+\varepsilon)$.
Q.3a Show that $\mathcal{A}\left(z_{1}, \ldots, z_{n}\right)=1_{z_{1}+\cdots+z_{n}<\frac{n}{2}}$ makes $d(X, Y)$ maximal.

Let $h=z_{1}+\cdots+z_{n}$. We have

$$
\begin{aligned}
\operatorname{Pr}\left[X_{1}\right. & \left.=z_{1}, \ldots, X_{n}=z_{n}\right]
\end{aligned}=2^{-n}(1-\varepsilon)^{h}(1+\varepsilon)^{n-h}, ~(1-\varepsilon)^{n}(1-\varepsilon)^{n-h} .
$$

So, $\operatorname{Pr}\left[X_{1}=z_{1}, \ldots, X_{n}=z_{n}\right]<\operatorname{Pr}\left[Y_{1}=z_{1}, \ldots, Y_{n}=z_{n}\right]$ is equivalent to $(1-\varepsilon)^{h}(1+\varepsilon)^{n-h}<(1+\varepsilon)^{h}(1-\varepsilon)^{n-h}$, which is equivalent to $(1+\varepsilon)^{n-2 h}<$ $(1-\varepsilon)^{n-2 h}$, which is equivalent to $h<\frac{n}{2}$. Hence, the suggested \mathcal{A} is actually equivalent to the optimal algorithm based on the likelihood ratio. We know it makes $d(X, Y)$ maximal.
Q.3b Given that $\operatorname{Pr}\left[X_{1}+\cdots+X_{n}<\frac{n}{2}\right]=\operatorname{Pr}\left[Y_{1}+\cdots+Y_{n}>\frac{n}{2}\right]$, prove that for n odd, we have $d(X, Y)=\left|1-2 \operatorname{Pr}\left[X_{1}+\cdots+X_{n}<\frac{n}{2}\right]\right|$.

Actually, $d(X, Y)$ is the advantage which is $d(X, Y)=\mid \operatorname{Pr}\left[Y_{1}+\cdots+Y_{n}<\right.$ $\left.\frac{n}{2}\right] \left.-\operatorname{Pr}\left[X_{1}+\cdots+X_{n}<\frac{n}{2}\right] \right\rvert\,$. For n odd, we have $\operatorname{Pr}\left[Y_{1}+\cdots+Y_{n}<\frac{n}{2}\right]=$ $1-\operatorname{Pr}\left[Y_{1}+\cdots+Y_{n}>\frac{n}{2}\right]$ which gives the answer.
Q.3c Compute the expected value and the variance of $X_{1}+\cdots+X_{n}$.

We have
and
\qquad
$\qquad\left(X_{1}+\cdots+X_{n}\right)=n \cdot E\left(X_{i}\right)=\frac{n}{2}(1-\varepsilon)$
because $V\left(X_{i}\right)=E\left(X_{i}\right)\left(1-E\left(X_{i}\right)\right)$.

Q.3d By approximating $X_{1}+\cdots+X_{n}$ to a normal distribution, give an asymptotic equivalent to n so that $d(X, Y)$ is a constant.

$$
\begin{aligned}
& \text { For } \operatorname{Pr}\left[X_{1}+\cdots+X_{n}<\frac{n}{2}\right] \text { to be constant, we need } \frac{n}{2} \varepsilon \text { and } \sqrt{\frac{n}{4}\left(1-\varepsilon^{2}\right)} \text { of same } \\
& \text { order of magnitude. This means } n \sim \frac{\text { cste }}{\varepsilon^{2}} \text {. } \\
& \text { It is interesting to observe that to amplify the statistical distance with close- } \\
& \text { to-unbiased distributions, it is harder than for close-by distributions which are } \\
& \text { heavily biased. } \\
& \text { Nice solution from a student: we apply the upper-tail Chernoff bound with } \\
& \delta=\frac{\varepsilon}{1-\varepsilon} \text { which says } \\
& \qquad \operatorname{Pr}\left[X_{1}+\cdots+X_{n}>(1+\delta) \mu\right] \leq e^{-\frac{\delta^{2}}{2+\delta} \mu} \\
& \text { hence } \operatorname{Pr}\left[X_{1}+\cdots+X_{n}>\frac{n}{2}\right] \leq e^{-\frac{\varepsilon^{2}}{2(2-\varepsilon)} n} \text {. So, with } n>\frac{4}{\varepsilon^{2}} \text {, we get } \operatorname{Pr}\left[X_{1}+\cdots+\right. \\
& \left.X_{n}>\frac{n}{2}\right] \leq e^{-1} .
\end{aligned}
$$

