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– any document allowed
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– the exam invigilators will not answer any technical question during the exam
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The exam grade follows a linear scale in which each question has the same weight.

1 Equivalence between OW-CPA and IND-CPA over the
Binary Domain

We recall the definition of a public-key cryptosystem (PKC) from the course:

A PKC is a tuple (Gen,M,Enc,Dec) with a plaintext domainM and three polyno-
mially bounded algorithms Gen, Enc, and Dec. The algorithm Dec is deterministic
and outputs either something inM or an error ⊥. It is such that

∀X ∈M Pr
rg ,re

[Dec(sk,Enc(pk, X; re)) = X] = 1

where (pk, sk) = Gen(1s; rg).

We assume that M = {0, 1}ℓ. We recall the definition of IND-CPA security from the
course:

A PKC (Gen,M,Enc,Dec) is IND-CPA-secure if for any interactive PPT process
(A1,A2), the advantage Adv is negligible.

Adv = Pr[Γ1 returns 1]− Pr[Γ0 returns 1]

Game Γb

1: Gen
$−→ (pk, sk)

2: A1(pk)
$−→ (pt0, pt1, st)

3: if |pt0| ̸= |pt1| then return 0

4: ct
$←− Enc(pk, ptb)

5: A2(st, ct)
$−→ z



6: return z

Q.1 Precisely define OW-CPA security, the security notion of a PKC against decryption
attacks. For that, define the OW-CPA game, consider the probability of success of the
trivial random guessing attack, and define the advantage of an adversary of being the
difference of its probability of success with the one of the trivial attack.

A PKC (Gen,M,Enc,Dec) is OW-CPA-secure if for any PPT algorithm A,
the advantage Adv is negligible.

Game
1: Gen

$−→ (pk, sk)

2: pt0
$←− {0, 1}ℓ

3: ct0 ← Enc(pk, pt0)
4: A(pk, ct0)→ pt
5: return 1pt=pt0

Since the random guessing adversary succeeds with probability 2−ℓ, we define

Adv = Pr[game returns 1]− 2−ℓ

One student suggested to give to A the random coins which were used in Enc.
That could define a stronger security notion (which many current cryptosys-
tems would not satisfy).

Q.2 Formally (and clearly) prove that if a PKC is IND-CPA secure, then it is OW-CPA
secure.



We want to prove that PKC is OW-CPA secure. So, we take an adversary A
playing the OW-CPA game. We define B = (B1,B2) as follows:

B1(pk):
1: pt0, pt1

$←− {0, 1}ℓ of same length
2: st← (pk, pt1)
3: return (pt0, pt1, st)

B2(st, ct):
4: parse (pk, pt1) = st
5: pt← A(pk, ct)
6: return 1pt=pt1

We assume that PKC is IND We let p be the probability that the OW-CPA
game with A returns 1. The advantage of A is p− 2−ℓ.
The Γb game with B rewrites as follows.

Game Γb

1: Gen
$−→ (pk, sk)

2: pt0, pt1
$←− {0, 1}ℓ of same length

3: ct
$←− Enc(pk, ptb)

4: pt← A(pk, ct)
5: return 1pt=pt1

The b = 1 case boils down to the OW-CPA game and we have Pr[Γ1 → 1] = p.
In the b = 0 case, the output of A is independent from pt1 and pt1 is uniformly
distributed. Hence, Pr[Γ0 → 1] ≤ 2−ℓ (to take into account the cases where the
output of A is not inM.) We deduce that the advantage of B in the IND-CPA
game is Adv ≥ p−2−ℓ. Assuming IND-CPA security, we deduce that p−2−ℓ is
negligible. As this is the advantage of A, we deduce that the advantage of every
A playing the OW-CPA game is negligible. Hence, PKC is OW-CPA secure.

Q.3 For a PKC which is OW-CPA secure, formally prove that if ℓ = 1, then the PKC is
IND-CPA secure.



To prove IND-CPA security, we take an IND-CPA adversary A = (A1,A2).
We define an OW-CPA adversary B as follows:

B(pk, ct):
1: A1(pk)→ (pt0, pt1, st)
2: if pt0 = pt1 then return a random bit
3: A2(st, ct)→ z
4: return z ⊕ pt0

The OW-CPA game becomes

Game
1: Gen

$−→ (pk, sk)

2: pt
$←− {0, 1}ℓ

3: ct← Enc(pk, pt)
4: A1(pk)→ (pt0, pt1, st)
5: if pt0 = pt1 then return a random bit
6: A2(st, ct)→ z
7: return 1z=pt⊕pt0

We use a bridging step to claim that it is equivalent to the game where A1 is
run and pt0 = pt1 is tested before selecting pt, and where we use the change of
variable b = pt⊕ pt0.

Game
1: Gen

$−→ (pk, sk)
2: A1(pk)→ (pt0, pt1, st)
3: if pt0 = pt1 then return a random bit

4: b
$←− {0, 1}ℓ

5: ct← Enc(pk, b⊕ pt0)
6: A2(st, ct)→ z
7: return 1z=b

In the IND-CPA game, we let E be the event that pt0 = pt1. When ¬E holds,
we note that b⊕ pt0 = ptb.
The probability that the OW-CPA game returns 1 is

1

2
Pr[E] + Pr[z = b|¬E]× Pr[¬E]

Hence, the OW-CPA advantage is(
Pr[z = b|¬E]− 1

2

)
× Pr[¬E]

We notice that

Pr[z = 1|b = 1,¬E]− Pr[z = 1|b = 0,¬E] = 2Pr[z = b|¬E]− 1

Since Pr[z = 1|b = 1, E]−Pr[z = 1|b = 0, E] = 0, we deduce that the advantage
of A in the IND-CPA game is twice the advantage of B in the OW-CPA game.
Assuming OW-CPA security, this must be negligible. As this holds for any A,
we deduce IND-CPA security.



2 Strengthening Contact Tracing against Replay Attacks

We consider a contact tracing scheme. This schemes runs in the smartphones of all users.
The purpose of this scheme is to make sure that a user who have met another user who
ended up being diagnosed with COVID-19 can receive an alert, self-isolate, and get a test.
The scheme works as follows.

Each phone A sets up a new key k every day. Quite regularly, the phone broadcasts
EphID = PRF(k, t), where t is a counter. The broadcast is done with Bluetooth, so that
other phones B in proximity can obtain EphID and store it. If A even get diagnosed of
COVID-19, a public health authority gives A some credential allowing A to publish the
past used k on a server. Regularly, the phone B checks if new k values have been published.
If it is the case, B tries to match any PRFk(t) with any of the stored EphID. A match
indicates that B has met a user who later got diagnosed.

Q.1 Propose a scenario of attack by which a healthy adversary A could broadcast to B an
EphID which will cause a false alert on B with good probability.

A could buy EphID on a darknet. The darknet would be populated by EphID
caught by hunters in places which are likely to have people C who will be declared
sick soon, like a hospital, or the neighborhood of someone who has just been
diagnosed. By broadcasting this EphID to B, once C is diagnosed and reported,
B has an alert.
Many students suggested that A could reuse the published k to generate EphID
and broadcast to B. This works as well, but is defeated by the server publishing
the date when k was reported and B checking that the reported date is posterior
to the reception date (assuming secure clocks).
One student suggested to break the reporting scheme. If A manages to report
k without being infected, this attack works too. Assuming that the credential
system is well done, the attack is defeated.

Q.2 We propose a change in the protocol in which EphID = [time∥r∥τ ] where time is the
clock value when EphID is broadcasted, r is a random value, and τ = PRFk(h) where
h = H(time∥r) and H is a hash function. At reception, the receiver takes its clock value
time′ and checks that |time− time′| is small enough. After that, the receiver stores [h∥τ ]
and discards the rest.
Explain what else the receiver should do before raising an alert to mitigate the previous
attack.

When getting k from the server, the receiver B should check that his stored
[h∥τ ] verifies τ = PRFk(h). This way, a replay attack must make sure that the
replay is done immediately after having obtained EphID.
Corresponding to the other attack mentioned by students, B should also check
that the reception time of EphID is prior to the reporting time of k.



Q.3 What do you think of this scheme?
NOTE: There is no unique good answer. Feel free to make any properly supported
statement.

We had many different good answers. Students gave many remarks
about the security or the potential insecurity of this scheme. Many
possible answers could be found in https://eprint.iacr.org/2020/399 or
https://eprint.iacr.org/2020/531. The objective of this question was to see if
students could say anything meaningful about this scheme. It was not to make
a complete survey of things to say about it.


