Advanced Cryptography - Final Exam

Serge Vaudenay

30.6.2021

- duration: 3h
- any document allowed
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will not answer any technical question during the exam
- readability and style of writing will be part of the grade

1 Encryption Security with a Ciphertext Checking Oracle

We consider the following One-Way under Validity Checking Attack (OW-VCA) game. The advantage of the adversary is the probability it returns 1 .

```
Game \(\Gamma^{\mathcal{A}}\left(1^{s}\right)\) :
Oracle VCO(ct)
\(\operatorname{Gen}\left(1^{s}\right) \rightarrow \mathrm{pk}, \mathrm{sk}\)
pick pt* \(\in \mathcal{M}_{s}\) at random
    6: \(\operatorname{Dec}(\mathrm{sk}, \mathrm{ct}) \rightarrow x\)
    7: return \(1_{x \neq \perp}\)
Enc(pk, pt*) \(\rightarrow \mathrm{ct}^{*}\)
\(\mathcal{A}^{\mathrm{VCO}}\left(\mathrm{pk}, \mathrm{ct}^{*}\right) \rightarrow z\)
return \(1_{z=\text { pt }^{*}}\)
```

Where s is the security parameter, (Gen, Enc, Dec) is a public-key cryptosystem, \mathcal{M}_{s} is the plaintext domain, and \perp is the special output of Dec indicating that decryption failed.
Q. 1 Is PKCS\#1 v1.5 secure with respect to this notion?
Q. 2 Propose a definition of KR-VCA security whose goal is key recovery.
Q. 3 We recall the Regev cryptosystem over the plaintext domain $\mathcal{M}=\{0,1\}$.

Gen selects a prime number p, integers m and n, a parameter $\sigma \ll \frac{p}{m}$. Then, it selects a secret sk $\in \mathbf{Z}_{p}^{n}$ and a public key $\mathrm{pk}=(A, b)$ satisfying $b=A \times \mathrm{sk}+e \bmod p$, where $A \in \mathbf{Z}_{p}^{m \times n}$ is a $m \times n$ matrix and $e \in \mathbf{Z}_{p}^{m}$ is an error vector which is selected as follows: for each component i, we sample a real number with normal distribution with mean 0 and standard deviation σ and take e_{i} as its nearest integer.
Enc(pk, pt) picks a vector $v \in\{0,1\}^{m}$ at random, $c_{1}=v^{t} \times A \bmod p, c_{2}=\mathrm{pt} \times\left\lfloor\frac{p}{2}\right\rfloor+$ $v^{t} b \bmod p$, and returns ct $=\left(c_{1}, c_{2}\right)$.
$\operatorname{Dec}\left(\mathrm{sk},\left(c_{1}, c_{2}\right)\right)$ computes $d=c_{2}-c_{1} \times \operatorname{sk} \bmod p$ then pt^{\prime} such that $d-\mathrm{pt}^{\prime} \times\left\lfloor\frac{p}{2}\right\rfloor$ is congruent to an integer in the $\left[-\frac{p}{4},+\frac{p}{4}\right]$ interval modulo p.
Prove that the cryptosystem is correct.
Q. 4 Make a successful KR-CCA attack on the Regev cryptosystem.
Q. 5 We define a cryptosystem over a domain \mathcal{M}_{s} as follows: Gen is like in the Regev cryptosystem, Enc first computes $x=(\mathrm{pt}, H(\mathrm{pt}))$ using a hash function, then encrypt each of the n bits of x using the Regev cryptosystem to obtain $\mathrm{ct}=\mathrm{ct}_{1}, \ldots, \mathrm{ct}_{n}$. Dec decrypts the n ciphertexts to obtain n bits x^{\prime} which are parsed into $x^{\prime}=\left(\mathrm{pt}^{\prime}, h^{\prime}\right)$. If $h^{\prime}=H\left(\mathrm{pt}^{\prime}\right)$, then pt^{\prime} is returned. Otherwise, \perp is returned.
Prove that this cryptosystem is not KR-VCA secure.

2 Optimal Resistance to Linear Cryptanalysis Modulo 2

Let n be an integer. We consider X_{1}, \ldots, X_{n} i.i.d. random variables which are uniform over \mathbf{Z}_{4}. We consider Y independent from X_{1}, \ldots, X_{n} and uniformly distributed in $\{0,1\}$. We let $X_{n+1}=Y+X_{1}+\cdots+X_{n} \bmod 4$. Finally, $X=\left(X_{1}, \ldots, X_{n+1}\right) \in \mathbf{Z}_{4}^{n+1}$. We write X as a bitstring of length $2 n+2$ by concatenating the binary representation of the X_{i} over two bits. We denote the bits $X[1], \ldots, X[2 n+2]$. Hence, $X_{1}=2 X[1]+X[2], X_{2}=2 X[3]+X[4]$, etc. We recall that for a random variable B, we have $\operatorname{LP}(B)=\left(E\left((-1)^{B}\right)\right)^{2}$.

The goal of the exercise is to show that although for every balanced linear function $x \mapsto a \cdot x$ from $\mathbf{Z}_{2}^{2 n+2}$ to \mathbf{Z}_{2}, the LP bias is very small, there exists a balanced Boolean function $x \mapsto f(x)$ whose LP bias is huge.
Q. 1 Let B be the most significant bit of $X_{n+1}-X_{1}-\cdots-X_{n} \bmod 4$.

Compute LP (B).
Q. 2 Let a be a nonzero binary mask over $2 n+2$ bits such that $a[2 n+1]=0$.

Prove that $\operatorname{LP}(a \cdot X)=0$.
Q. 3 Let a be a binary mask over $2 n+2$ bits such that $a[2 n+1]=1$ and $a[i]=0$ for some odd index i.
Prove that $\operatorname{LP}(a \cdot X)=0$.
HINT: $X[2 n+1]=\sum_{j} X[2 j-1]+\sum_{j<j^{\prime}} X[2 j] X\left[2 j^{\prime}\right]+\sum_{j} X[2 j] Y$ where j and j^{\prime} go from 1 to n.
Q. 4 Let a be a binary mask over $2 n+2$ bits such that $a[i]=1$ for every odd index i.

Prove that $\operatorname{LP}(a \cdot X)=2^{-n-1}$ for n odd.
HINT: For every $n,\left(\sum_{w=0}^{n-1}\binom{n}{w}(-1)^{\frac{w(w-1)}{2}}\right)^{2}=2^{n}\left(1+\sin \frac{n \pi}{2}\right)$.

3 MPC-in-the-Head

Let R be a relation over bitstrings x and w defining an NP language. We assume a multiparty computation (MPC) with two participants A and B such that

- A and B have as public common input x;
- A and B have respective private inputs w_{A} and w_{B};
- A and B have as final common output $R\left(x, w_{A} \oplus w_{B}\right)$;
- a malicious participant learns nothing about the private input of honest participants.

We let $\mathcal{U}\left(x, w_{U} ; r_{U}\right)$ be the protocol run by $U \in\{A, B\}$ and $\operatorname{Run}\left(x, \mathcal{A}\left(w_{A} ; r_{A}\right), \mathcal{B}\left(w_{B} ; r_{B}\right)\right)$ be the interaction. We will use a commitment scheme Commit.

We define a Σ protocol over the challenge set $\{A, B\}$ as follows.
$-\mathcal{P}(x, w)$ first flips w_{A}, r_{A}, r_{B}, sets $w_{B}=w_{A} \oplus w$, then simulates the interaction $\operatorname{Run}\left(x, \mathcal{A}\left(w_{A} ; r_{A}\right), \mathcal{B}\left(w_{B} ; r_{B}\right)\right)$. It computes the transcript t (i.e. x and the list of exchanged messages) of the protocol.

- It flips k_{A} and k_{B} and computes $c_{A}=\operatorname{Commit}\left(w_{A}, r_{A} ; k_{A}\right)$ and $c_{B}=\operatorname{Commit}\left(w_{B}, r_{B} ; k_{B}\right)$.
- The message $a=\left(t, c_{A}, c_{B}\right)$ is sent to \mathcal{V}.
- \mathcal{V} flips a challenge $e \in\{A, B\}$ and sends it to \mathcal{P}.
$-\mathcal{P}$ sends $z=\left(w_{e}, r_{e}, k_{e}\right)$.
$-\mathcal{V}$ makes a final verification.
Q. 1 Describe the final verification of \mathcal{V} and prove that the Σ protocol is correct.
Q. 2 Define an extractor and prove it is correct.
Q. 3 How would we define a simulator? (An informal argument is fine for this question.)

