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– duration: 3h
– any document allowed
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade

1 Encryption Security with a Ciphertext Checking Oracle

We consider the following One-Way under Validity Checking Attack (OW-VCA) game.
The advantage of the adversary is the probability it returns 1.

Game ΓA(1s):
1: Gen(1s) → pk, sk
2: pick pt∗ ∈ Ms at random
3: Enc(pk, pt∗) → ct∗

4: AVCO(pk, ct∗) → z
5: return 1z=pt∗

Oracle VCO(ct)
6: Dec(sk, ct) → x
7: return 1x ̸=⊥

Where s is the security parameter, (Gen,Enc,Dec) is a public-key cryptosystem, Ms is
the plaintext domain, and ⊥ is the special output of Dec indicating that decryption failed.

Q.1 Is PKCS#1 v1.5 secure with respect to this notion?
Q.2 Propose a definition of KR-VCA security whose goal is key recovery.
Q.3 We recall the Regev cryptosystem over the plaintext domain M = {0, 1}.

Gen selects a prime number p, integers m and n, a parameter σ � p
m
. Then, it selects

a secret sk ∈ Zn
p and a public key pk = (A, b) satisfying b = A × sk + e mod p, where

A ∈ Zm×n
p is a m× n matrix and e ∈ Zm

p is an error vector which is selected as follows:
for each component i, we sample a real number with normal distribution with mean 0
and standard deviation σ and take ei as its nearest integer.
Enc(pk, pt) picks a vector v ∈ {0, 1}m at random, c1 = vt × A mod p, c2 = pt ×

⌊
p
2

⌋
+

vtb mod p, and returns ct = (c1, c2).
Dec(sk, (c1, c2)) computes d = c2 − c1 × sk mod p then pt′ such that d − pt′ ×

⌊
p
2

⌋
is

congruent to an integer in the [−p
4
,+p

4
] interval modulo p.

Prove that the cryptosystem is correct.
Q.4 Make a successful KR-CCA attack on the Regev cryptosystem.



Q.5 We define a cryptosystem over a domain Ms as follows: Gen is like in the Regev cryp-
tosystem, Enc first computes x = (pt, H(pt)) using a hash function, then encrypt each
of the n bits of x using the Regev cryptosystem to obtain ct = ct1, . . . , ctn. Dec decrypts
the n ciphertexts to obtain n bits x′ which are parsed into x′ = (pt′, h′). If h′ = H(pt′),
then pt′ is returned. Otherwise, ⊥ is returned.
Prove that this cryptosystem is not KR-VCA secure.

2 Optimal Resistance to Linear Cryptanalysis Modulo 2

Let n be an integer. We consider X1, . . . , Xn i.i.d. random variables which are uniform over
Z4. We consider Y independent from X1, . . . , Xn and uniformly distributed in {0, 1}. We
let Xn+1 = Y +X1 + · · ·+Xn mod 4. Finally, X = (X1, . . . , Xn+1) ∈ Zn+1

4 . We write X as
a bitstring of length 2n+ 2 by concatenating the binary representation of the Xi over two
bits. We denote the bits X[1], . . . , X[2n+2]. Hence, X1 = 2X[1]+X[2], X2 = 2X[3]+X[4],

etc. We recall that for a random variable B, we have LP(B) =
(
E((−1)B)

)2
.

The goal of the exercise is to show that although for every balanced linear function
x 7→ a · x from Z2n+2

2 to Z2, the LP bias is very small, there exists a balanced Boolean
function x 7→ f(x) whose LP bias is huge.

Q.1 Let B be the most significant bit of Xn+1 −X1 − · · · −Xn mod 4.
Compute LP(B).

Q.2 Let a be a nonzero binary mask over 2n+ 2 bits such that a[2n+ 1] = 0.
Prove that LP(a ·X) = 0.

Q.3 Let a be a binary mask over 2n+ 2 bits such that a[2n+ 1] = 1 and a[i] = 0 for some
odd index i.
Prove that LP(a ·X) = 0.
HINT: X[2n+ 1] =

∑
j X[2j − 1] +

∑
j<j′ X[2j]X[2j′] +

∑
j X[2j]Y where j and j′ go

from 1 to n.
Q.4 Let a be a binary mask over 2n+ 2 bits such that a[i] = 1 for every odd index i.

Prove that LP(a ·X) = 2−n−1 for n odd.

HINT: For every n,

(
n−1∑
w=0

(n
w

)
(−1)

w(w−1)
2

)2

= 2n
(
1 + sin

nπ

2

)
.

3 MPC-in-the-Head

Let R be a relation over bitstrings x and w defining an NP language. We assume a multi-
party computation (MPC) with two participants A and B such that

– A and B have as public common input x;
– A and B have respective private inputs wA and wB;
– A and B have as final common output R(x,wA ⊕ wB);
– a malicious participant learns nothing about the private input of honest participants.
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We let U(x,wU ; rU) be the protocol run by U ∈ {A,B} and Run(x,A(wA; rA),B(wB; rB))
be the interaction. We will use a commitment scheme Commit.

We define a Σ protocol over the challenge set {A,B} as follows.

– P(x,w) first flips wA, rA, rB, sets wB = wA ⊕ w, then simulates the interaction
Run(x,A(wA; rA),B(wB; rB)). It computes the transcript t (i.e. x and the list of ex-
changed messages) of the protocol.

– It flips kA and kB and computes cA = Commit(wA, rA; kA) and cB = Commit(wB, rB; kB).
– The message a = (t, cA, cB) is sent to V .
– V flips a challenge e ∈ {A,B} and sends it to P .
– P sends z = (we, re, ke).
– V makes a final verification.

Q.1 Describe the final verification of V and prove that the Σ protocol is correct.
Q.2 Define an extractor and prove it is correct.
Q.3 How would we define a simulator? (An informal argument is fine for this question.)
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