Advanced Cryptography — Final Exam

Serge Vaudenay

30.6.2021

- duration: 3h
- any document allowed
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will <u>**not**</u> answer any technical question during the exam
- readability and style of writing will be part of the grade

1 Encryption Security with a Ciphertext Checking Oracle

We consider the following One-Way under Validity Checking Attack (OW-VCA) game. The advantage of the adversary is the probability it returns 1.

Where s is the security parameter, (Gen, Enc, Dec) is a public-key cryptosystem, \mathcal{M}_s is the plaintext domain, and \perp is the special output of Dec indicating that decryption failed.

- Q.1 Is PKCS#1 v1.5 secure with respect to this notion?
- Q.2 Propose a definition of KR-VCA security whose goal is key recovery.
- **Q.3** We recall the Regev cryptosystem over the plaintext domain $\mathcal{M} = \{0, 1\}$.

Gen selects a prime number p, integers m and n, a parameter $\sigma \ll \frac{p}{m}$. Then, it selects a secret $\mathbf{sk} \in \mathbf{Z}_p^n$ and a public key $\mathbf{pk} = (A, b)$ satisfying $b = A \times \mathbf{sk} + e \mod p$, where $A \in \mathbf{Z}_p^{m \times n}$ is a $m \times n$ matrix and $e \in \mathbf{Z}_p^m$ is an error vector which is selected as follows: for each component i, we sample a real number with normal distribution with mean 0 and standard deviation σ and take e_i as its nearest integer.

Enc(pk, pt) picks a vector $v \in \{0, 1\}^m$ at random, $c_1 = v^t \times A \mod p$, $c_2 = \mathsf{pt} \times \lfloor \frac{p}{2} \rfloor + v^t b \mod p$, and returns $\mathsf{ct} = (c_1, c_2)$.

 $\mathsf{Dec}(\mathsf{sk}, (c_1, c_2))$ computes $d = c_2 - c_1 \times \mathsf{sk} \mod p$ then pt' such that $d - \mathsf{pt}' \times \lfloor \frac{p}{2} \rfloor$ is congruent to an integer in the $\left[-\frac{p}{4}, +\frac{p}{4}\right]$ interval modulo p.

Prove that the cryptosystem is correct.

Q.4 Make a successful KR-CCA attack on the Regev cryptosystem.

Q.5 We define a cryptosystem over a domain \mathcal{M}_s as follows: Gen is like in the Regev cryptosystem, Enc first computes $x = (\mathsf{pt}, H(\mathsf{pt}))$ using a hash function, then encrypt each of the *n* bits of *x* using the Regev cryptosystem to obtain $\mathsf{ct} = \mathsf{ct}_1, \ldots, \mathsf{ct}_n$. Dec decrypts the *n* ciphertexts to obtain *n* bits *x'* which are parsed into $x' = (\mathsf{pt}', h')$. If $h' = H(\mathsf{pt}')$, then pt' is returned. Otherwise, \bot is returned.

Prove that this cryptosystem is not KR-VCA secure.

2 Optimal Resistance to Linear Cryptanalysis Modulo 2

Let *n* be an integer. We consider X_1, \ldots, X_n i.i.d. random variables which are uniform over \mathbb{Z}_4 . We consider *Y* independent from X_1, \ldots, X_n and uniformly distributed in $\{0, 1\}$. We let $X_{n+1} = Y + X_1 + \cdots + X_n \mod 4$. Finally, $X = (X_1, \ldots, X_{n+1}) \in \mathbb{Z}_4^{n+1}$. We write *X* as a bitstring of length 2n + 2 by concatenating the binary representation of the X_i over two bits. We denote the bits $X[1], \ldots, X[2n+2]$. Hence, $X_1 = 2X[1] + X[2], X_2 = 2X[3] + X[4]$, etc. We recall that for a random variable *B*, we have $\mathsf{LP}(B) = (E((-1)^B))^2$.

The goal of the exercise is to show that although for every balanced linear function $x \mapsto a \cdot x$ from \mathbb{Z}_2^{2n+2} to \mathbb{Z}_2 , the LP bias is very small, there exists a balanced Boolean function $x \mapsto f(x)$ whose LP bias is huge.

- **Q.1** Let *B* be the most significant bit of $X_{n+1} X_1 \cdots X_n \mod 4$. Compute $\mathsf{LP}(B)$.
- **Q.2** Let a be a nonzero binary mask over 2n + 2 bits such that a[2n + 1] = 0. Prove that $LP(a \cdot X) = 0$.
- **Q.3** Let a be a binary mask over 2n + 2 bits such that a[2n + 1] = 1 and a[i] = 0 for some odd index *i*.

Prove that $LP(a \cdot X) = 0$. HINT: $X[2n+1] = \sum_{j} X[2j-1] + \sum_{j < j'} X[2j]X[2j'] + \sum_{j} X[2j]Y$ where j and j' go from 1 to n.

Q.4 Let a be a binary mask over 2n + 2 bits such that a[i] = 1 for every odd index i. Prove that $\mathsf{LP}(a \cdot X) = 2^{-n-1}$ for n odd.

HINT: For every
$$n$$
, $\left(\sum_{w=0}^{n-1} \binom{n}{w} (-1)^{\frac{w(w-1)}{2}}\right)^2 = 2^n \left(1 + \sin \frac{n\pi}{2}\right).$

3 MPC-in-the-Head

Let R be a relation over bitstrings x and w defining an NP language. We assume a multiparty computation (MPC) with two participants A and B such that

- -A and B have as public common input x;
- -A and B have respective private inputs w_A and w_B ;
- A and B have as final common output $R(x, w_A \oplus w_B)$;
- a malicious participant learns nothing about the private input of honest participants.

We let $\mathcal{U}(x, w_U; r_U)$ be the protocol run by $U \in \{A, B\}$ and $\operatorname{Run}(x, \mathcal{A}(w_A; r_A), \mathcal{B}(w_B; r_B))$ be the interaction. We will use a commitment scheme Commit.

We define a Σ protocol over the challenge set $\{A, B\}$ as follows.

- $-\mathcal{P}(x,w)$ first flips w_A , r_A , r_B , sets $w_B = w_A \oplus w$, then simulates the interaction $\operatorname{\mathsf{Run}}(x,\mathcal{A}(w_A;r_A),\mathcal{B}(w_B;r_B))$. It computes the transcript t (i.e. x and the list of exchanged messages) of the protocol.
- It flips k_A and k_B and computes $c_A = \mathsf{Commit}(w_A, r_A; k_A)$ and $c_B = \mathsf{Commit}(w_B, r_B; k_B)$.
- The message $a = (t, c_A, c_B)$ is sent to \mathcal{V} .
- \mathcal{V} flips a challenge $e \in \{A, B\}$ and sends it to \mathcal{P} .
- $-\mathcal{P}$ sends $z = (w_e, r_e, k_e).$
- \mathcal{V} makes a final verification.
- **Q.1** Describe the final verification of \mathcal{V} and prove that the Σ protocol is correct.
- Q.2 Define an extractor and prove it is correct.
- Q.3 How would we define a simulator? (An informal argument is fine for this question.)