Advanced Cryptography — Final Exam Solution

Serge Vaudenay

24.5.2022

- duration: 3h
- any document allowed
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will <u>**not**</u> answer any technical question during the exam
- readability and style of writing will be part of the grade

The exam grade follows a linear scale in which each question has the same weight.

1 Σ Protocol for Discrete Log Equality

We assume that public parameters **pp** describe a group, how to do operations and comparison in the group, and also give its prime order p. We use additive notation and 0 denotes the neutral element in the group. We define the relation $R((\mathbf{pp}, G, X, Y, Z), x)$ for group elements G, X, Y, Z and an integer x which is true if and only if $G \neq 0$, X = xG, and Z = xY. We construct a Σ -protocol for R with challenge set \mathbf{Z}_p . The prover starts by picking $k \in \mathbf{Z}_p$ with uniform distribution, computing and sending A = kG and B = kY. Then, the prover gets a challenge $e \in \mathbf{Z}_p$. The answer is an integer z to be computed in a way which is a subject of the following question. The final verification is also a subject of the following question. The protocol looks like this:

Q.1 Inspired by the Schnorr proof, finish the specification of the prover and the verifier.

Essentially, we do a Schnorr proof in the group of (X, Z) pairs. That is, we prove knowledge of x such that (X, Z) = x(G, Y). Based on that, the prover sends (A, B) = k(G, Y), gets e, and answers by $z = k + ex \mod p$. The final verification is z(G, Y) = (A, B) + e(X, Z), i.e. zG = A + eX and zY = B + eZ. The verifier should verify $G \neq 0$ too. Q.2 Specify the extractor and the simulator.

Given two valid transcripts (A, B, e_1, z_1) and (A, B, e_2, z_2) with the same (A, B)and different $e_1 \neq e_2$, we set

$$x = \frac{z_2 - z_1}{e_2 - e_1} \bmod p$$

and we prove (X, Z) = x(G, Y) like in the Schnorr proof. Given e and a random z, we define (A, B) = z(G, Y) - e(X, Z) and obtain a simulated transcript (A, B, e, z) with same distribution, like in the Schnorr proof:

$$x(G,Y) = \frac{1}{e_2 - e_1} (z_2(G,Y) - z_1(G,Y))$$

= $\frac{1}{e_2 - e_1} ((A,B) + e_2(X,Z) - (A,B) - e_1(X,Z))$
= (X,Z)

Frequent mistake in exams: writing $z_i = k + e_i x$ is incorrect because the prover is malicious and there is no way to be sure that z_i was computed this way.

Q.3 Fully specify another Σ -protocol for the relation $R((\mathsf{pp}, G, X, Y, Z, U, V), (a, b))$ which is true if and only if U = aG + bY and V = aX + bZ.

By defining a group action (a, b) * ((G, X), (Y, Z)) = a(G, X) + b(Y, Z), we easily extend the previous protocol: the prover picks $(k, k') \in \mathbb{Z}_p^2$, computes and sends (A, B) = (k, k') * ((G, X), (Y, Z)). The verifier sends a challenge $e \in \mathbb{Z}_p$. The prover computes and sends $(z, z') = (k, k') + e(a, b) \mod p$. The verifier checks (z, z') * ((G, X), (Y, Z)) = (A, B) + e(U, V). The protocol looks as follows:

Prover Verifier witness: a, binstance: (pp, G, X, Y, Z, U, V)(U = aG + bY and V = aX + bZ)pick $k, k' \in \mathbf{Z}_p$ A = kG + k'Y, B = kX + k'Z $z = k + ea \mod p \qquad \xleftarrow{e}$ pick $e \in \mathbf{Z}_p$ $z' = k' + eb \mod p$ $z'z, z' \longrightarrow$ verify: zG + z'Y = A + eUzX + z'Z = B + eVGiven (A, B, e_1, z_1, z_1') and (A, B, e_2, z_2, z_2') , the extractor computes $a = \frac{z_2 - z_1}{e_2 - e_1}$ and $b = \frac{z'_2 - z'_1}{e_2 - e_1}$. Given e and a random (z, z'), the simulator sets (A, B) = (z, z') *((G, X), (Y, Z)) - e(U, V).Common mistake: a similar protocol with k' = k does not work as it leaks $\frac{z'-z}{e} = b - a$. The simulator should fail. Another common mistake is to send kG, k'Y, kX, and k'Z which is not zeroknowledge either. The simulator does not generate the right distribution.

2 Distinguisher for Lai-Massey Schemes

The Lai-Massey scheme is an alternate construction to the Feistel scheme to build a block cipher from round functions. Let n be the block size and r be the number of rounds. We denote by \oplus the bitwise XOR operation over bistrings. Let the F_i be secret functions from $\{0,1\}^{\frac{n}{2}}$ to itself and π be a fixed public permutation over $\{0,1\}^{\frac{n}{2}}$. Let $x, y \in \{0,1\}^{\frac{n}{2}}$ and $x \parallel y$ denote the concatenation of the two bitstrings. We define

$$\varphi(F_1,\ldots,F_r)(x\|y) = \varphi(F_2,\ldots,F_r)(\pi(x\oplus F_1(x\oplus y))\|(y\oplus F_1(x\oplus y)))$$

for r > 1 and

$$\varphi(F_r)(x||y) = (x \oplus F_r(x \oplus y))||(y \oplus F_r(x \oplus y))$$

when there is a single round. In what follows, we assume that the permutation π is defined by

$$\pi(x_L \| x_R) = (x_R \| (x_L \oplus x_R))$$

where $x_L, x_R \in \{0, 1\}^{\frac{n}{4}}$. For example, a 2-round Lai-Massey scheme is represented as follows:

Q.1 If $\varphi(F_1, \ldots, F_r)$ is the encryption function, what is the decryption function?

We define φ' for r > 1 by

 $\varphi'(F_r, \dots, F_1)(x||y) = ((\pi^{-1}(x') \oplus F_1(\pi^{-1}(x') \oplus y'))||(y' \oplus F_1(\pi^{-1}(x') \oplus y')))$ where $\varphi'(F_r, \dots, F_2)(x||y) = (x'||y')$, and for r = 1 by $\varphi'(F_1) = \varphi(F_1)$. We
prove by induction that $(\varphi(F_1, \dots, F_r))^{-1} = \varphi'(F_r, \dots, F_1)$.
This is clear for r = 1. Actually, $\varphi'(F_1) = \varphi(F_1)$ and we can directly see that $(\varphi(F_1) \circ \varphi(F_1))(x||y) = x||y$.
Assuming this is true for r - 1 rounds, we show that $(\varphi'(F_r, \dots, F_1) \circ \varphi(F_1, \dots, F_r))(x||y) = x||y$ for any x and y as follows: $(\varphi'(F_r, \dots, F_1) \circ \varphi(F_1, \dots, F_r))(x||y) = ((\pi^{-1}(x') \oplus F_1(\pi^{-1}(x') \oplus y')))|(y' \oplus F_1(\pi^{-1}(x') \oplus y')))$ where $(x'||y') = \varphi'(F_r, \dots, F_2) (\varphi(F_2, \dots, F_r)(\pi(x \oplus F_1(x \oplus y)))|(y \oplus F_1(x \oplus y))))$

By the induction hypothesis, we have

$$(x'||y') = (\pi(x \oplus F_1(x \oplus y))||(y \oplus F_1(x \oplus y)))$$

By substituting x' and y' in the above equation, we obtain $(\varphi'(F_r, \ldots, F_1) \circ \varphi(F_1, \ldots, F_r))(x||y) = x||y|$ which proves the property on r rounds.

Q.2 Give a distinguisher between $\varphi(F_1)$ and a random permutation with a single known plaintext and advantage close to 1. (Compute the advantage.)

We have

 $\varphi(F_1)(x||y) = (x \oplus F_1(x \oplus y))||(y \oplus F_1(x \oplus y))$

So, if x || y is a known plaintext and $x' || y' = \varphi(F_1)(x || y)$ is the corresponding ciphertext, we have

$$x' \oplus y' = x \oplus y$$

which is a property being satisfied with probability $2^{-\frac{n}{2}}$ for the random cipher. Hence, by checking this property, we have a distinguisher with advantage $1 - 2^{-\frac{n}{2}}$.

Q.3 Give a distinguisher between $\varphi(F_1, F_2)$ and a random permutation with two chosen plaintexts and advantage close to 1. (Compute the advantage.)

We let $x_L, x_R, y_L, y_R, \alpha, \beta \in \{0, 1\}^{\frac{n}{4}}$. We assume that $x_L ||x_R||y_L||y_R$ and $(x_L \oplus \alpha) ||(x_R \oplus \beta)||(y_L \oplus \alpha)||(y_R \oplus \beta)$ are the chosen plaintexts. Clearly, the input to F_1 is the same in both messages. We let u ||v| denote the common output. The input and output to π are

$$\pi((x_L \oplus u) \| (x_R \oplus v)) = (x_R \oplus v) \| (x_L \oplus x_R \oplus u \oplus v)$$

and

$$\pi((x_L \oplus \alpha \oplus u) \| (x_R \oplus \beta \oplus v)) = (x_R \oplus \beta \oplus v) \| (x_L \oplus \alpha \oplus x_R \oplus \beta \oplus u \oplus v)$$

If the two ciphertexts are $x'_L ||x'_R||y'_L||y'_R$ and $x''_L ||x''_R||y''_L||y''_R$ respectively, we have

$$\begin{aligned} x'_{L} \oplus y'_{L} &= x_{R} \oplus v \oplus y_{L} \oplus u \\ x'_{R} \oplus y'_{R} &= x_{L} \oplus x_{R} \oplus u \oplus y_{R} \\ x''_{L} \oplus y''_{L} &= x_{R} \oplus v \oplus y_{L} \oplus u \oplus \alpha \oplus \beta \\ x''_{R} \oplus y''_{R} &= x_{L} \oplus x_{R} \oplus u \oplus y_{R} \oplus \alpha \oplus \beta \end{aligned}$$

and we can eliminate u and v and obtain

$$\begin{aligned} x'_R \oplus y'_R \oplus x''_R \oplus y''_R &= \alpha \oplus \beta \\ x'_L \oplus x'_R \oplus y'_L \oplus y'_L &= x''_L \oplus x''_R \oplus y''_L \oplus y''_L \end{aligned}$$

These two properties are satisfied with probability close to $2^{-\frac{n}{2}}$ for the random cipher. Hence, by checking this property, we have a distinguisher with advantage close to $1 - 2^{-\frac{n}{2}}$.

3 Bias in the Modulo p Seed

We assume a setup phase $\mathsf{Setup}(1^{\lambda}) \to p$ to determine a public prime number p with security parameter λ . We consider the following generators:

Generator $\operatorname{Gen}_0(1^\lambda, p)$:	Generator $Gen_1(1^\lambda, p)$:	Generator $Gen_2(1^\lambda, p)$:
1: pick $y \in_U \mathbf{Z}_p$	1: $\ell \leftarrow \lceil \log_2 p \rceil$	1: $\ell \leftarrow \lceil \log_2 p \rceil$
2: return y	2: pick $x \in U \{0, 1, \dots, 2^{\ell} - 1\}$	2: pick $x \in U \{0, 1, \dots, 2^{\ell+\lambda} - 1\}$
	3: $y \leftarrow x \mod p$	3: $y \leftarrow x \mod p$
	4: return y	4: return y

Here, "pick $x \in_U E$ " means that we sample x from a set E with uniform distribution. The value ℓ is the bitlength of p. In what follows, we consider distinguishers with unbounded complexity but limited to a single query to a generator.

Q.1 Estimate how ℓ is usually fixed to have λ -bit security for typical cryptography in a (generic) group of order p. (For instance, in an elliptic curve.)

Typically, we need the discrete logarithm to be hard. Due to generic attacks, this requires $\ell \geq 2\lambda$ to have λ -bit security. In a generic group, $\ell = 2\lambda$ is enough.

Q.2 Compute the advantage of the best distinguisher between Gen_0 and Gen_1 . Could it be large?

We know that the best advantage of an unbounded distinguisher limited to one sample is equal to the statistical distance between the two distributions. We let d_1 be the statistical distance between the outputs of Gen_0 and Gen_1 . We have

$$d_1 = \frac{1}{2} \sum_{y=0}^{p-1} \left| \frac{1}{p} - \Pr[x \mod p = y] \right|$$

where x is uniform in $\{0, 1, \dots, 2^{\ell} - 1\}$. Hence, $\Pr[x \mod p = y] = 2^{-\ell}$ if $y \ge 2^{\ell} \mod p$ and $\Pr[x \mod p = y] = 2 \times 2^{-\ell}$ otherwise. Thus,

$$d_{1} = \frac{1}{2} \sum_{y=0}^{(2^{\ell} \mod p)-1} \left| \frac{1}{p} - \frac{2}{2^{\ell}} \right| + \frac{1}{2} \sum_{y=2^{\ell} \mod p}^{p-1} \left| \frac{1}{p} - \frac{1}{2^{\ell}} \right|$$
$$= \sum_{y=0}^{(2^{\ell} \mod p)-1} \left| \frac{1}{p} - \frac{2}{2^{\ell}} \right|$$
$$= (2^{\ell} \mod p) \left(\frac{2}{2^{\ell}} - \frac{1}{p} \right)$$

(The second line comes from that the difference between the two sums is equal to the sum of the two sums without absolute values which is zero.) We write $2^{\ell} = p + r$ with $0 \le r < 2^{\ell-1} < p$. We have

$$d_1 = r\left(\frac{2}{2^\ell} - \frac{1}{2^\ell - r}\right)$$

As we can see, for $r \approx 2^{\ell-2}$, we have $d_1 \approx \frac{1}{6}$. So d_1 can be pretty high. $(\frac{1}{6} \text{ is not negligible.})$

Q.3 Compute the advantage of the best distinguisher between Gen_0 and Gen_2 . Hint: use the Euclidean division $2^{\ell+\lambda} = qp + r$.

We let d_2 be the statistical distance. We write $2^{\ell+\lambda} = qp+r$ with $0 \le r < p$. For $y \ge r$ we have $\Pr[x \mod p = y] = \frac{q}{2^{\ell+\lambda}}$ and $\Pr[x \mod p = y] = \frac{q+1}{2^{\ell+\lambda}}$ otherwise. Hence, with the same computation,

$$d_2 = \sum_{y=0}^{r-1} \left(\frac{q+1}{2^{\ell+\lambda}} - \frac{1}{p} \right) = r \left(\frac{q+1}{2^{\ell+\lambda}} - \frac{q}{2^{\ell+\lambda} - r} \right) = r \frac{2^{\ell+\lambda} - r(q+1)}{2^{\ell+\lambda}(2^{\ell+\lambda} - r)} \le \frac{r}{2^{\ell+\lambda} - r}$$

The upper bound increases with r but we know that r so

$$d_2 \le \frac{1}{2^\lambda - 1} \approx 2^{-\lambda}$$

Q.4 Based on the computations, what do you conclude about the generator algorithms?

To obtain a λ -bit security with generators in the group, we should certainly not use Gen_1 . The Gen_2 generator is enough if we select a single element. If we rather need to use it n times, we better pick x of bitlength $\ell + \lambda + \lceil \log_2 n \rceil$.