Advanced Cryptography - Final Exam Solution

Serge Vaudenay

24.5.2022

- duration: 3h
- any document allowed
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will not answer any technical question during the exam
- readability and style of writing will be part of the grade

The exam grade follows a linear scale in which each question has the same weight.

1Σ Protocol for Discrete Log Equality

We assume that public parameters pp describe a group, how to do operations and comparison in the group, and also give its prime order p. We use additive notation and 0 denotes the neutral element in the group. We define the relation $R((\mathrm{pp}, G, X, Y, Z), x)$ for group elements G, X, Y, Z and an integer x which is true if and only if $G \neq 0, X=x G$, and $Z=x Y$. We construct a Σ-protocol for R with challenge set \mathbf{Z}_{p}. The prover starts by picking $k \in \mathbf{Z}_{p}$ with uniform distribution, computing and sending $A=k G$ and $B=k Y$. Then, the prover gets a challenge $e \in \mathbf{Z}_{p}$. The answer is an integer z to be computed in a way which is a subject of the following question. The final verification is also a subject of the following question. The protocol looks like this:

$$
\begin{array}{r}
\begin{array}{c}
\text { Prover } \\
\text { witness: } x \\
x G \\
\text { and } Z=x Y) \\
\text { pick } k \in \mathbf{Z}_{p}
\end{array} \\
\begin{aligned}
\text { instance: }(\mathrm{pp}, G, X, Y, Z)
\end{aligned} \\
\begin{aligned}
\text { Verifier } \\
A=k G, B=k Y \xrightarrow{\longleftrightarrow}
\end{aligned} \\
\\
? ? \longrightarrow \text { pick } e \in \mathbf{Z}_{p}
\end{array}
$$

Q. 1 Inspired by the Schnorr proof, finish the specification of the prover and the verifier.

Essentially, we do a Schnorr proof in the group of (X, Z) pairs. That is, we prove knowledge of x such that $(X, Z)=x(G, Y)$. Based on that, the prover sends $(A, B)=k(G, Y)$, gets e, and answers by $z=k+e x \bmod p$. The final verification is $z(G, Y)=(A, B)+e(X, Z)$, i.e. $z G=A+e X$ and $z Y=B+e Z$. The verifier should verify $G \neq 0$ too.
Q. 2 Specify the extractor and the simulator.

Given two valid transcripts $\left(A, B, e_{1}, z_{1}\right)$ and $\left(A, B, e_{2}, z_{2}\right)$ with the same (A, B) and different $e_{1} \neq e_{2}$, we set

$$
x=\frac{z_{2}-z_{1}}{e_{2}-e_{1}} \bmod p
$$

and we prove $(X, Z)=x(G, Y)$ like in the Schnorr proof.
Given e and a random z, we define $(A, B)=z(G, Y)-e(X, Z)$ and obtain a simulated transcript (A, B, e, z) with same distribution, like in the Schnorr proof:

$$
\begin{aligned}
x(G, Y) & =\frac{1}{e_{2}-e_{1}}\left(z_{2}(G, Y)-z_{1}(G, Y)\right) \\
& =\frac{1}{e_{2}-e_{1}}\left((A, B)+e_{2}(X, Z)-(A, B)-e_{1}(X, Z)\right) \\
& =(X, Z)
\end{aligned}
$$

Frequent mistake in exams: writing $z_{i}=k+e_{i} x$ is incorrect because the prover is malicious and there is no way to be sure that z_{i} was computed this way.
Q. 3 Fully specify another Σ-protocol for the relation $R((\mathrm{pp}, G, X, Y, Z, U, V),(a, b))$ which is true if and only if $U=a G+b Y$ and $V=a X+b Z$.

By defining a group action $(a, b) *((G, X),(Y, Z))=a(G, X)+b(Y, Z)$, we easily extend the previous protocol: the prover picks $\left(k, k^{\prime}\right) \in \mathbf{Z}_{p}^{2}$, computes and sends $(A, B)=\left(k, k^{\prime}\right) *((G, X),(Y, Z))$. The verifier sends a challenge $e \in \mathbf{Z}_{p}$. The prover computes and sends $\left(z, z^{\prime}\right)=\left(k, k^{\prime}\right)+e(a, b) \bmod p$. The verifier checks $\left(z, z^{\prime}\right) *((G, X),(Y, Z))=(A, B)+e(U, V)$.
The protocol looks as follows:

$$
\begin{aligned}
& \text { Prover Verifier } \\
& \text { witness: } a, b \quad \text { instance: }(\mathrm{pp}, G, X, Y, Z, U, V) \\
& (U=a G+b Y \text { and } V=a X+b Z) \\
& \text { pick } k, k^{\prime} \in \mathbf{Z}_{p} \\
& A=k G+k^{\prime} Y, B=k X+k^{\prime} Z \quad A, B \\
& z=k+e a \bmod p \quad e \quad \text { pick } e \in \mathbf{Z}_{p} \\
& z^{\prime}=k^{\prime}+e b \bmod p \quad z, z^{\prime} \longrightarrow \text { verify: } \\
& z G+z^{\prime} Y=A+e U \\
& z X+z^{\prime} Z=B+e V
\end{aligned}
$$

Given $\left(A, B, e_{1}, z_{1}, z_{1}^{\prime}\right)$ and $\left(A, B, e_{2}, z_{2}, z_{2}^{\prime}\right)$, the extractor computes $a=\frac{z_{2}-z_{1}}{e_{2}-e_{1}}$ and $b=\frac{z_{2}^{\prime}-z_{1}^{\prime}}{e_{2}-e_{1}}$.
Given e and a random $\left(z, z^{\prime}\right)$, the simulator sets $(A, B)=\left(z, z^{\prime}\right) *$ $((G, X),(Y, Z))-e(U, V)$.
Common mistake: a similar protocol with $k^{\prime}=k$ does not work as it leaks $\frac{z^{\prime}-z}{e}=b-a$. The simulator should fail.
Another common mistake is to send $k G, k^{\prime} Y, k X$, and $k^{\prime} Z$ which is not zeroknowledge either. The simulator does not generate the right distribution.

2 Distinguisher for Lai-Massey Schemes

The Lai-Massey scheme is an alternate construction to the Feistel scheme to build a block cipher from round functions. Let n be the block size and r be the number of rounds. We denote by \oplus the bitwise XOR operation over bistrings. Let the F_{i} be secret functions from $\{0,1\}^{\frac{n}{2}}$ to itself and π be a fixed public permutation over $\{0,1\}^{\frac{n}{2}}$. Let $x, y \in\{0,1\}^{\frac{n}{2}}$ and $x \| y$ denote the concatenation of the two bitstrings. We define

$$
\varphi\left(F_{1}, \ldots, F_{r}\right)(x \| y)=\varphi\left(F_{2}, \ldots, F_{r}\right)\left(\pi\left(x \oplus F_{1}(x \oplus y)\right) \|\left(y \oplus F_{1}(x \oplus y)\right)\right)
$$

for $r>1$ and

$$
\varphi\left(F_{r}\right)(x \| y)=\left(x \oplus F_{r}(x \oplus y)\right) \|\left(y \oplus F_{r}(x \oplus y)\right)
$$

when there is a single round. In what follows, we assume that the permutation π is defined by

$$
\pi\left(x_{L} \| x_{R}\right)=\left(x_{R} \|\left(x_{L} \oplus x_{R}\right)\right)
$$

where $x_{L}, x_{R} \in\{0,1\}^{\frac{n}{4}}$. For example, a 2-round Lai-Massey scheme is represented as follows:

Q. 1 If $\varphi\left(F_{1}, \ldots, F_{r}\right)$ is the encryption function, what is the decryption function?

We define φ^{\prime} for $r>1$ by

$$
\varphi^{\prime}\left(F_{r}, \ldots, F_{1}\right)(x \| y)=\left(\left(\pi^{-1}\left(x^{\prime}\right) \oplus F_{1}\left(\pi^{-1}\left(x^{\prime}\right) \oplus y^{\prime}\right)\right) \|\left(y^{\prime} \oplus F_{1}\left(\pi^{-1}\left(x^{\prime}\right) \oplus y^{\prime}\right)\right)\right)
$$

where $\varphi^{\prime}\left(F_{r}, \ldots, F_{2}\right)(x \| y)=\left(x^{\prime} \| y^{\prime}\right)$, and for $r=1$ by $\varphi^{\prime}\left(F_{1}\right)=\varphi\left(F_{1}\right)$. We prove by induction that $\left(\varphi\left(F_{1}, \ldots, F_{r}\right)\right)^{-1}=\varphi^{\prime}\left(F_{r}, \ldots, F_{1}\right)$.
This is clear for $r=1$. Actually, $\varphi^{\prime}\left(F_{1}\right)=\varphi\left(F_{1}\right)$ and we can directly see that $\left(\varphi\left(F_{1}\right) \circ \varphi\left(F_{1}\right)\right)(x \| y)=x \| y$.
Assuming this is true for $r-1$ rounds, we show that $\left(\varphi^{\prime}\left(F_{r}, \ldots, F_{1}\right) \circ\right.$ $\left.\varphi\left(F_{1}, \ldots, F_{r}\right)\right)(x \| y)=x \| y$ for any x and y as follows:

$$
\begin{aligned}
& \left(\varphi^{\prime}\left(F_{r}, \ldots, F_{1}\right) \circ \varphi\left(F_{1}, \ldots, F_{r}\right)\right)(x \| y) \\
= & \left(\left(\pi^{-1}\left(x^{\prime}\right) \oplus F_{1}\left(\pi^{-1}\left(x^{\prime}\right) \oplus y^{\prime}\right)\right) \|\left(y^{\prime} \oplus F_{1}\left(\pi^{-1}\left(x^{\prime}\right) \oplus y^{\prime}\right)\right)\right)
\end{aligned}
$$

where

$$
\left(x^{\prime} \| y^{\prime}\right)=\varphi^{\prime}\left(F_{r}, \ldots, F_{2}\right)\left(\varphi\left(F_{2}, \ldots, F_{r}\right)\left(\pi\left(x \oplus F_{1}(x \oplus y)\right) \|\left(y \oplus F_{1}(x \oplus y)\right)\right)\right)
$$

By the induction hypothesis, we have

$$
\left(x^{\prime} \| y^{\prime}\right)=\left(\pi\left(x \oplus F_{1}(x \oplus y)\right) \|\left(y \oplus F_{1}(x \oplus y)\right)\right)
$$

By substituting x^{\prime} and y^{\prime} in the above equation, we obtain $\left(\varphi^{\prime}\left(F_{r}, \ldots, F_{1}\right) \circ\right.$ $\left.\varphi\left(F_{1}, \ldots, F_{r}\right)\right)(x \| y)=x \| y$ which proves the property on r rounds.
Q. 2 Give a distinguisher between $\varphi\left(F_{1}\right)$ and a random permutation with a single known plaintext and advantage close to 1 . (Compute the advantage.)

We have

$$
\varphi\left(F_{1}\right)(x \| y)=\left(x \oplus F_{1}(x \oplus y)\right) \|\left(y \oplus F_{1}(x \oplus y)\right)
$$

So, if $x \| y$ is a known plaintext and $x^{\prime} \| y^{\prime}=\varphi\left(F_{1}\right)(x \| y)$ is the corresponding ciphertext, we have

$$
x^{\prime} \oplus y^{\prime}=x \oplus y
$$

which is a property being satisfied with probability $2^{-\frac{n}{2}}$ for the random cipher. Hence, by checking this property, we have a distinguisher with advantage 1 -$2^{-\frac{n}{2}}$.
Q. 3 Give a distinguisher between $\varphi\left(F_{1}, F_{2}\right)$ and a random permutation with two chosen plaintexts and advantage close to 1 . (Compute the advantage.)

We let $x_{L}, x_{R}, y_{L}, y_{R}, \alpha, \beta \in\{0,1\}^{\frac{n}{4}}$. We assume that $x_{L}\left\|x_{R}\right\| y_{L} \| y_{R}$ and $\left(x_{L} \oplus\right.$ $\alpha)\left\|\left(x_{R} \oplus \beta\right)\right\|\left(y_{L} \oplus \alpha\right) \|\left(y_{R} \oplus \beta\right)$ are the chosen plaintexts. Clearly, the input to F_{1} is the same in both messages. We let $u \| v$ denote the common output. The input and output to π are

$$
\pi\left(\left(x_{L} \oplus u\right) \|\left(x_{R} \oplus v\right)\right)=\left(x_{R} \oplus v\right) \|\left(x_{L} \oplus x_{R} \oplus u \oplus v\right)
$$

and

$$
\pi\left(\left(x_{L} \oplus \alpha \oplus u\right) \|\left(x_{R} \oplus \beta \oplus v\right)\right)=\left(x_{R} \oplus \beta \oplus v\right) \|\left(x_{L} \oplus \alpha \oplus x_{R} \oplus \beta \oplus u \oplus v\right)
$$

If the two ciphertexts are $x_{L}^{\prime}\left\|x_{R}^{\prime}\right\| y_{L}^{\prime} \| y_{R}^{\prime}$ and $x_{L}^{\prime \prime}\left\|x_{R}^{\prime \prime}\right\| y_{L}^{\prime \prime} \| y_{R}^{\prime \prime}$ respectively, we have

$$
\begin{aligned}
x_{L}^{\prime} \oplus y_{L}^{\prime} & =x_{R} \oplus v \oplus y_{L} \oplus u \\
x_{R}^{\prime} \oplus y_{R}^{\prime} & =x_{L} \oplus x_{R} \oplus u \oplus y_{R} \\
x_{L}^{\prime \prime} \oplus y_{L}^{\prime \prime} & =x_{R} \oplus v \oplus y_{L} \oplus u \oplus \alpha \oplus \beta \\
x_{R}^{\prime \prime} \oplus y_{R}^{\prime \prime} & =x_{L} \oplus x_{R} \oplus u \oplus y_{R} \oplus \alpha \oplus \beta
\end{aligned}
$$

and we can eliminate u and v and obtain

$$
\begin{aligned}
x_{R}^{\prime} \oplus y_{R}^{\prime} \oplus x_{R}^{\prime \prime} \oplus y_{R}^{\prime \prime} & =\alpha \oplus \beta \\
x_{L}^{\prime} \oplus x_{R}^{\prime} \oplus y_{L}^{\prime} \oplus y_{L}^{\prime} & =x_{L}^{\prime \prime} \oplus x_{R}^{\prime \prime} \oplus y_{L}^{\prime \prime} \oplus y_{L}^{\prime \prime}
\end{aligned}
$$

These two properties are satisfied with probability close to $2^{-\frac{n}{2}}$ for the random cipher. Hence, by checking this property, we have a distinguisher with advantage close to $1-2^{-\frac{n}{2}}$.

3 Bias in the Modulo p Seed

We assume a setup phase $\operatorname{Setup}\left(1^{\lambda}\right) \rightarrow p$ to determine a public prime number p with security parameter λ. We consider the following generators:

```
Generator Gen
```



```
Generator Gen ( (1 \lambda},p)
    1: pick }y\mp@subsup{\in}{U}{}\mp@subsup{\mathbf{Z}}{p}{
    2: return y 2: pick }x\mp@subsup{\in}{U}{}{0,1,\ldots,\mp@subsup{2}{}{\ell}-1
    1:\ell\leftarrow\lceil\mp@subsup{\operatorname{log}}{2}{}p\rceil
    2: pick }x\mp@subsup{\in}{U}{}{0,1,\ldots,\mp@subsup{2}{}{\ell+\lambda}-1
    3: y\leftarrowx\operatorname{mod}p\quad3:y\leftarrowx\operatorname{mod}p
    4: return y 4: return y
```

Here, "pick $x \in_{U} E$ " means that we sample x from a set E with uniform distribution. The value ℓ is the bitlength of p. In what follows, we consider distinguishers with unbounded complexity but limited to a single query to a generator.
Q. 1 Estimate how ℓ is usually fixed to have λ-bit security for typical cryptography in a (generic) group of order p. (For instance, in an elliptic curve.)

Typically, we need the discrete logarithm to be hard. Due to generic attacks, this requires $\ell \geq 2 \lambda$ to have λ-bit security. In a generic group, $\ell=2 \lambda$ is enough.
Q. 2 Compute the advantage of the best distinguisher between Gen_{0} and Gen_{1}. Could it be large?

We know that the best advantage of an unbounded distinguisher limited to one sample is equal to the statistical distance between the two distributions. We let d_{1} be the statistical distance between the outputs of Gen_{0} and Gen_{1}. We have

$$
d_{1}=\frac{1}{2} \sum_{y=0}^{p-1}\left|\frac{1}{p}-\operatorname{Pr}[x \bmod p=y]\right|
$$

where x is uniform in $\left\{0,1, \ldots, 2^{\ell}-1\right\}$. Hence, $\operatorname{Pr}[x \bmod p=y]=2^{-\ell}$ if $y \geq 2^{\ell} \bmod p$ and $\operatorname{Pr}[x \bmod p=y]=2 \times 2^{-\ell}$ otherwise. Thus,

$$
\begin{aligned}
d_{1} & =\frac{1}{2} \sum_{y=0}^{\left(2^{\ell} \bmod p\right)-1}\left|\frac{1}{p}-\frac{2}{2^{\ell}}\right|+\frac{1}{2} \sum_{y=2^{\ell} \bmod p}^{p-1}\left|\frac{1}{p}-\frac{1}{2^{\ell}}\right| \\
& =\sum_{y=0}^{\left(2^{\ell} \bmod p\right)-1}\left|\frac{1}{p}-\frac{2}{2^{\ell}}\right| \\
& =\left(2^{\ell} \bmod p\right)\left(\frac{2}{2^{\ell}}-\frac{1}{p}\right)
\end{aligned}
$$

(The second line comes from that the difference between the two sums is equal to the sum of the two sums without absolute values which is zero.) We write $2^{\ell}=p+r$ with $0 \leq r<2^{\ell-1}<p$. We have

$$
d_{1}=r\left(\frac{2}{2^{\ell}}-\frac{1}{2^{\ell}-r}\right)
$$

As we can see, for $r \approx 2^{\ell-2}$, we have $d_{1} \approx \frac{1}{6}$. So d_{1} can be pretty high. $\left(\frac{1}{6}\right.$ is not negligible.)
Q. 3 Compute the advantage of the best distinguisher between Gen_{0} and Gen_{2}.

Hint: use the Euclidean division $2^{\ell+\lambda}=q p+r$.
We let d_{2} be the statistical distance. We write $2^{\ell+\lambda}=q p+r$ with $0 \leq r<p$. For $y \geq r$ we have $\operatorname{Pr}[x \bmod p=y]=\frac{q}{2^{\ell+\lambda}}$ and $\operatorname{Pr}[x \bmod p=y]=\frac{q+1}{2^{\ell+\lambda}}$ otherwise. Hence, with the same computation,

$$
d_{2}=\sum_{y=0}^{r-1}\left(\frac{q+1}{2^{\ell+\lambda}}-\frac{1}{p}\right)=r\left(\frac{q+1}{2^{\ell+\lambda}}-\frac{q}{2^{\ell+\lambda}-r}\right)=r \frac{2^{\ell+\lambda}-r(q+1)}{2^{\ell+\lambda}\left(2^{\ell+\lambda}-r\right)} \leq \frac{r}{2^{\ell+\lambda}-1}
$$

The upper bound increases with r but we know that $r<p \leq 2^{\ell}$ so

$$
d_{2} \leq \frac{1}{2^{\lambda}-1} \approx 2^{-\lambda}
$$

Q. 4 Based on the computations, what do you conclude about the generator algorithms?

> To obtain a λ-bit security with generators in the group, we should certainly not use Gen_{1}. The Gen_{2} generator is enough if we select a single element. If we rather need to use it n times, we better pick x of bitlength $\ell+\lambda+\left\lceil\log _{2} n\right\rceil$.

