
Advanced Cryptography — Midterm Exam

Solution

Serge Vaudenay

14.4.2022

– duration: 1h45

– any document allowed

– a pocket calculator is allowed

– communication devices are not allowed

– the exam invigilators will not answer any technical question during the exam

– readability and style of writing will be part of the grade

The exam grade follows a linear scale in which each question has the same weight.

1 2-Move Authenticated Key Agreement

The traditional Diffie-Hellman key agreement scheme is a 2-move protocol. The interface
can be modeled in the following way:

– Setup(1λ)→ pp sets up public parameters pp using a security parameter λ.

– Send(pp) → (esk, epk) generates an ephemeral key pair where epk is to be sent to the
counterpart.

– Receive(pp, esk, epk) → K receives the counterpart’s epk and generates the shared key
K.

Both participants are supposed to send and receive to derive their local K. The protocol
is meant to resist to passive attacks with the notion of key indistinguishability. We extend
this primitive in order to authenticate the final key by using a long-term key. For this, we
add the following algorithm in the interface:

– KeyGen(pp)→ (lsk, lpk) generates a long term key pair for a user, where lpk is publicly
associated to the user and lsk is kept secret.

In addition, Send takes as input the long-term secret of the user and Receive takes as input
the long-term public key of the counterpart.

Q.1 Rewrite the entire interface and define the correctness notion using a fully specified
game.



The interface is now:
– Setup(1λ)→ pp
– KeyGen(pp)→ (lsk, lpk)
– Send(pp, lsk)→ (esk, epk)
– Receive(pp, esk, lpk, epk)→ K/⊥
Correctness is defined by having the following game always returning 1:

1: Setup(1λ)→ pp
2: KeyGen(pp)→ (lskA, lpkA) ▷ initialize Alice
3: KeyGen(pp)→ (lskB, lpkB) ▷ initialize Bob
4: Send(pp, lskA)→ (eskA, epkA) ▷ Alice sends
5: Send(pp, lskB)→ (eskB, epkB) ▷ Bob sends
6: KA ← Receive(pp, eskA, lpkB, epkB) ▷ Alice receives
7: KB ← Receive(pp, eskB, lpkA, epkA) ▷ Bob receives
8: return 1KA=KB ̸=⊥

A recurrent mistake is to describe a game with an adversary A. It is possible
to do so must it is most likely to be incorrect. First of all, the adversary must
be quantified. We cannot say “the scheme is correct if there exists an A such
that...” because the guaranty of the existence of A may not match what we
think is the proper usage of the scheme. We cannot say “the scheme is correct
if for all A we have...” because the adversary doing nothing is unlikely to
make the final outcome correct. The adversary in correctness may be needed
when there are many possible ways to use the scheme, with choices which could
be adversarialy made. This is not the case here. The protocol follows some
well identified sequence: setup the keys, generate the ephemeral ones, exchange
them, and complete. There is no place for choices by an adversary here.

To model security against active attacks, we can no longer assume that the protocol
is honestly executed and give the transcript to the adversary. Instead, we use oracles
to model honest Alice honest Bob running Send and Receive. These oracles shall allow
multiple concurrent sessions. Hence, we consider the game in Fig. 1.

The instruction ensure tests if the following predicate is true and causes the oracle to
return ⊥ if it is not the case.

Q.2 Fully define the key indistinguishability notion based on this game.

Motivate why OReceive returns whether KP ̸= ⊥.

Explain why OTest ensures K1 ̸= ⊥.



Game Γb:
1: initialize state to empty
2: Setup(1λ)→ pp
3: KeyGen(pp)→ (lskA, lpkA)
4: KeyGen(pp)→ (lskB , lpkB)
5: Aoracles(pp, lpkA, lpkB)→ z
6: return z

Oracle OReceive(P, sid, lpk, epk):
7: ensure P ∈ {A,B}
8: ensure state[P, sid] exists with only two elements
9: state[P, sid]→ (eskP , epkP )
10: KP ← Receive(pp, eskP , lpk, epk)
11: select K0 at random
12: state[P, sid]←

(eskP , epkP , lpk, epk,K0,KP )
13: return 1KP ̸=⊥

Oracle OSend(P, sid):
14: ensure P ∈ {A,B}
15: ensure state[P, sid] does not exist
16: Send(pp, lskP )→ (eskP , epkP )
17: state[P, sid]← (eskP , epkP )
18: return epkP

Oracle OTest(P, sid):
19: ensure P ∈ {A,B}
20: ensure state[P, sid] exists with six elements
21: state[P, sid]→

(eskP , epkP , lpk, epk,K0,K1)
22: ensure K1 ̸= ⊥
23: return Kb

Fig. 1. Key indistinguishability game

The protocol is secure if for any PPT adversary A, the advantage defined by

AdvA(λ) = Pr[Γ1 → 1]− Pr[Γ0 → 1]

is a negligible function of λ.
The reason why OReceive returns whether KP ̸= ⊥ is because in real applica-
tions, the adversary will be able to figure out if a participant aborts or continues
to interact after key agreement is over.
If the adversary makes sure that a key agreement fails by having Receive re-
turning ⊥, OTest should always return ⊥ no matter the value of b. Otherwise,
it is trivial to deduce b and break the security notion. This is why it ensures
K1 ̸= ⊥.

Q.3 By using an adversary who makes Alice and Bob honestly execute the protocol, prove
that security in the sense of the above game can easily be broken.

Propose a way to fix the game to get a sound security notion.



We use the following adversary:

Adversary A(pp, lpkA, lpkB):
1: OSend(A, 1)→ epkA
2: OSend(B, 1)→ epkB
3: OReceive(A, 1, lpkB, epkB)

4: OReceive(B, 1, lpkA, epkA)
5: OTest(A, 1)→ KA

6: OTest(B, 1)→ KB

7: return 1KA=KB

If b = 1, correctness implies that A always returns 1. If b = 0, KA and KB are
set to independent random keys so are equal with negligible probability. Hence,
the advantage is 1− negl(λ).
One easy way to fix is to make sure that OTest is used only once:

Game Γb:
1: initialize tested to false
...

Oracle OTest(P, sid):
2: ensure ¬tested
3: ensure P ∈ {A,B}

4: ensure state[P, sid] exists with six
elements

5: state[P, sid]→
(eskP , epkP , lpk, epk, K0, K1)

6: ensure K1 ̸= ⊥
7: tested← true
8: return Kb

Another way is to make sure that K0 is selected the same on both ends when it
should be the case. The big problem is to identify well when this should be the
case. The adversary may call the two participants with different sid. Essentially,
we need to check if a session sid for A is “partner” of a session sid′ for B. This
can be done as follows:

Oracle OReveal(P, sid, epk):
1: ensure P ∈ {A,B}
2: set Q such that {P,Q} = {A,B}
3: ensure state[P, sid] exists with

only two elements
4: state[P, sid]→ (eskP , epkP )
5: KP ← Receive(pp, eskP , lpkQ, epk)
6: select K0 at random

7: for each sid′ such that
state[Q, sid′] exists with six ele-
ments do

8: state[Q, sid′]→
(esk′Q, epk

′
Q, lpk

′
P , epk

′
P , K

′
0, K

′
1)

9: if (epkP , epk, KP ) =
(epk′P , epk

′
Q, K

′
1) then K0 ← K ′

0

10: end for

There was an error in the specification of OReceive in the exercise which created
another security trouble. A few students have found it instead of the above
problem. The mistake was to let lpk be an input to OReceive which could be
maliciously selected by the adversary. As a consequence, the adversary could
generate its own key pair, do a normal key agreement with one participant, test
the key of that participant and compare with the key obtained by the adversary.
It is another trivial attack. Instead, OReceive should not make lpk an input but
rather use lpkQ generated by the game (as in the above pseudocode).



Q.4 Propose a protocol. Note: we do not require a security proof. The grade for this question
will depend on the security of the proposed protocol.

We use a normal key agreement KA (for instance the Diffie-Hellman protocol)
and a digital signature scheme DS. Essentially, we sign the ephemeral public
keys.

Setup(1λ):
1: KA.Setup(1λ)→ pp1
2: DS.Setup(1λ)→ pp2
3: pp← (pp1, pp2)
4: return pp

KeyGen(pp):
5: pp→ (pp1, pp2)
6: DS.KeyGen(pp2)→ (lsk, lpk)
7: return (lsk, lpk)

Send(pp, lsk):
8: pp→ (pp1, pp2)

9: KA.Send(pp1)→ (esk, epk0)
10: DS.Sign(pp2, lsk, epk0)→ σ
11: epk← (epk0, σ)
12: return (esk, epk)

Receive(pp, esk, lpk, epk):
13: pp→ (pp1, pp2)
14: epk← (epk0, σ)
15: KA.Receive(pp1, esk, epk0)→ K
16: if ¬DS.Verify(pp2, lpk, epk0, σ)

then K ← ⊥
17: return K



2 Redundant-RSA Decryption

Let n be an RSA modulus of unknown factorization. We know that given (x + 1)3 mod n
and x3 mod n we can easily compute x mod n.

Q.1 Given n, a = (x + 1)5 mod n, and b = x3 mod n, show how to compute x mod n
efficiently. Hint: x is a root of any polynomial which is a combination of (z + 1)5 − a
and z3 − b in Zn.

From a mathematical viewpoint, we consider the ideal of polynomials in Zn[z]
generated by (z+1)5−a and z3−b. All polynomials in this ideal have x as a root.
If we find a polynomial of degree 1, we can solve it and find x. We essentially
compute the gcd of the two polynomials by using the Euclid algorithm.
We write equations in Zn and we omit n for more readability. Since x3 = b,
we have

0 = (x+ 1)5 − a

= x5 + 5x4 + 10x3 + 10x2 + 5x+ 1− a

= (b+ 10)x2 + 5(b+ 1)x+ 1− a+ 10b

Hence

0 = (b+ 10)(x3 − b)

= x(−5(b+ 1)x− 1 + a− 10b)− b(b+ 10)

=−5(b+ 1)x2 − (1− a+ 10b)x− b(b+ 10)

By making a linear combination of the two equations to make the x2 terms
cancel, we obtain

0 = 25(b+ 1)2x+ 5(b+ 1)(1− a+ 10b)− (b+ 10)(1− a+ 10b)x− b(b+ 10)2

= (25(b+ 1)2 − (b+ 10)(1− a+ 10b))x+ 5(b+ 1)(1− a+ 10b)− b(b+ 10)2

from which we deduce

x =
5(b+ 1)(1− a+ 10b)− b(b+ 10)2

−25(b+ 1)2 + (b+ 10)(1− a+ 10b)
mod n

which we can easily compute.


