Cryptography and Security - Final Exam

Serge Vaudenay

28.1.2019

- duration: 3h
- no documents allowed, except one 2 -sided sheet of handwritten notes
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will not answer any technical question during the exam
- readability and style of writing will be part of the grade

1 The Mersenne Cryptosystem

In what follows, p denotes a prime number of form $p=2^{n}-1$. It is called a Mersenne prime. Elements in \mathbf{Z}_{p} are represented by numbers between 0 and $p-1$. Given $x \in \mathbf{Z}_{p}, W(x)$ denotes the number of 1 's when writing the element x in binary.
Q. 1 For all $x \in \mathbf{Z}_{p}^{*}$, prove that $W(-x \bmod p)=n-W(x)$.
Q. 2 For all $x, y \in \mathbf{Z}_{p}$, prove that $W(x+y \bmod p) \leq W(x)+W(y)$. HINT: first consider $y=1$, then $W(y)=1$, then proceed by induction.
Q. 3 For all $x, y \in \mathbf{Z}_{p}$, prove that $W(x \times y \bmod p) \leq W(x) \times W(y)$. HINT: use binary and show $W\left(x 2^{j} \bmod p\right)=W(x)$.
Q. 4 In what follows, h denotes a positive integer such that $4 h^{2}<n$. After the parameters n, p, and h are set up, we define the following algorithms: Gen (n, p, h) :
: pick $F, G \in \mathbf{Z}_{p}$ random such that $W(F)=W(G)=h$
set $\mathrm{pk}=\frac{F}{G} \bmod p$ and $\mathrm{sk}=G$
3: output pk and sk

Enc(pk, b):

4: pick $A, B \in \mathbf{Z}_{p}$ random such that $W(A)=W(B)=h$
5: set ct $=\left((-1)^{b} \times(A \times \mathrm{pk}+B)\right) \bmod p$
6: output ct
where b is a plaintext from the space $\{0,1\}$ (i.e. we encrypt only one bit).
Design a decryption algorithm and prove it is correct.
Q. 5 As a toy example, take $n=17, p=131071, h=2$. Generate a key pair using $F=2^{14}+2^{2}$ and $G=2^{10}+2^{6}$. Then, encrypt $b=1$ using $A=2^{11}+2^{5}$ and $B=2^{9}+2^{2}$. Detail the computations and give, pk, sk, ct.
HINT1: for people who have a 4-operation calculator: $a \times 2^{n}+b \equiv a+b\left(\bmod 2^{n}-1\right)$.
HINT2: by thinking of how multiplication by 2 works modulo p, find a trick to perform the division by 2 .
HINT3: $\frac{1}{17} \bmod p=123361$.

2 Collision Attack on CBC Mode

We consider TLS using a block cipher with n-bit message blocks in CBC mode. The goal of this exercise is to develop message recovery attacks, or at least to recover a sensitive part of a partially-known plaintext.
Q. 1 Given 2^{d} independent and uniformly distributed random variables $X_{1}, \ldots, X_{2^{d}}$ with values in $\{0,1\}^{n}$, what is the expected number of pairs (i, j) with $i<j$ such that $X_{i}=X_{j}$?
Q. 2 Given 2^{s} independent and uniformly distributed random variables $X_{1}, \ldots, X_{2^{s}}$ and 2^{t} independent and uniformly distributed random variables $Y_{1}, \ldots, Y_{2^{t}}$, all with values in $\{0,1\}^{n}$, what is the expected number of pairs (i, j) such that $X_{i}=Y_{j}$?
Q. 3 Consider a list of plaintexts of 2^{d} blocks in total. We assume that all blocks can be split into three categories: blocks which are already known by the adversary (we denote by α the fraction of blocks in this category), blocks which are privacy-sensitive thus an interested target for the adversary (we denote by β the fraction of blocks in this category), and other blocks which are unknown but uninteresting to recover (within a fraction $1-\alpha-\beta$). All ciphertext blocks are known by the adversary.
Assuming that the inputs of the block cipher are independent and uniform, design an attack which recovers some privacy-sensitive blocks. How large must 2^{d} be in order for the expected number of recovered sensitive blocks to be 1? Compute the data complexity 2^{d} in terms of n, α, and β.
HINT: encryption uses the CBC mode.
Q. 4 Assuming that the encryption key changes every 2^{r} blocks, adapt the previous attack and estimate its data complexity. Application: how much data do we need for $n=64$, $\alpha=\beta=\frac{1}{2}, r=\frac{n}{2}$?
Q. 5 We now assume that a plaintext of 2^{u} blocks is encrypted many times (with a random IV). We assume that all blocks but k sensitive ones are known by the adversary and that $k \ll 2^{u}$. However, the purpose is now to recover all sensitive blocks. Estimate the data complexity (in blocks) in terms of n, u, and k.

3 PKC vs KEM vs KA

In this exercise, we compare Public-Key Cryptosystems (PKC), Key Encapsulation Mechanisms (KEM), and non-interactive Key Agreement schemes (KA). We formalize the interface for each of the three primitives:

PKC

- Setup $\xrightarrow{\stackrel{\Phi}{p} p p}$
- Gen $(\mathrm{pp}) \xrightarrow{\stackrel{\Phi}{\rightarrow}}(\mathrm{pk}, \mathrm{sk})$
- Enc(pk, pt) $) \xrightarrow{\Phi} \mathrm{ct}$
- $\operatorname{Dec}(\mathrm{sk}, \mathrm{ct}) \rightarrow \mathrm{pt} / \perp$

KEM

- Setup $\xrightarrow{\$} \mathrm{pp}$
- Gen(pp) $\xrightarrow{\$}(\mathrm{pk}, \mathrm{sk})$
- Enc(pk) $\xrightarrow{s}(K, c t)$
$-\operatorname{Dec}(\mathrm{sk}, \mathrm{ct}) \rightarrow K / \perp$
- Setup $\xrightarrow{\$} \mathrm{pp}$

KA
$-\operatorname{Gen}_{A}(\mathrm{pp}) \xrightarrow{\Phi}\left(\mathrm{pk}_{A}, \mathrm{sk}_{A}\right)$
$-\operatorname{Gen}_{B}(\mathrm{pp}) \xrightarrow{\Phi}\left(\mathrm{pk}_{B}, \mathrm{sk}_{B}\right)$
$-\mathrm{KA}_{A}\left(\mathrm{sk}_{A}, \mathrm{pk}_{B}\right) \rightarrow K / \perp$
$-\mathrm{KA}_{B}\left(\mathrm{sk}_{B}, \mathrm{pk}_{A}\right) \rightarrow K / \perp$

The notation $\xrightarrow{\$}$ means that the function is probabilistic while \rightarrow is for deterministic ones. The notation K / \perp means that either some K or an error message \perp is returned.
Q. 1 Define the correctness notion for each of the three primitives.
Q. 2 The INDCPA security notion was defined for PKC in the course. We make a slight change and give a new definition: A PKC is (t, ε)-INDCPAror-secure if for all probabilistic adversary \mathcal{A} limited to a time complexity of t, we have

$$
\operatorname{Pr}[x=1 \mid b=0]-\operatorname{Pr}[x=1 \mid b=1] \leq \varepsilon
$$

where b is an input bit and x is the output of the following procedure, and the probability is over all probabilistic operations:
1: input b
2: Setup $\xrightarrow{\$} \mathrm{pp}$
3: $\operatorname{Gen}(\mathrm{pp}) \xrightarrow{\$}(\mathrm{pk}, \mathrm{sk})$
4: pick coins at random
5: \mathcal{A} (pp, pk; coins) $\rightarrow \mathrm{pt}_{0}$
6: pick pt_{1} at random, of same length at pt_{0}
$\mathrm{Enc}\left(\mathrm{pk}, \mathrm{pt}_{b}\right) \xrightarrow{\Phi} \mathrm{ct}$
\mathcal{A} (pp, pk, ct; coins) $\rightarrow x$
: return x
What was changed, compared to the INDCPA definition from the course?
Discuss on the importance of the change.
Q. 3 We define the KEM security as follows. A KEM is (t, ε)-INDCPAror-secure if for all probabilistic adversary \mathcal{A} limited to a time complexity of t, we have

$$
\operatorname{Pr}[x=1 \mid b=0]-\operatorname{Pr}[x=1 \mid b=1] \leq \varepsilon
$$

where b is an input bit and x is the output of the following procedure, and the probability is over all random coins:
1: input b
2: Setup $\xrightarrow{\$} \mathrm{pp}$
3: $\operatorname{Gen}(\mathrm{pp}) \xrightarrow{\$}(\mathrm{pk}, \mathrm{sk})$
4: $\operatorname{Enc}(\mathrm{pk}) \xrightarrow{\stackrel{\$}{\rightarrow}}\left(K_{0}, \mathrm{ct}\right)$
5: pick K_{1} at random of same length as K_{0}
6: $\mathcal{A}\left(\mathrm{pp}, \mathrm{pk}, \mathrm{ct}, K_{b}\right) \xrightarrow{s} x$
7: return x
Given a PKC, construct a KEM.
Prove that if the PKC is correct, then the KEM is correct.
Prove that there exists a constant τ such that for all t and ε, if the PKC is (t, ε)-INDCPArorsecure, then the KEM is $(t-\tau, \varepsilon)$-INDCPAror-secure.
Q. 4 Propose a definition for the INDCPAror-security of KA. Given a correct KA, construct a correct KEM.
Show that with the same method as in the previous question, we prove that there exists a constant τ such that for all t and ε, if the KA is (t, ε)-INDCPAror-secure, then the KEM is $(t-\tau, \varepsilon)$-INDCPAror-secure.

