Cryptography and Security — Final Exam

Serge Vaudenay

28.1.2019

- duration: 3h
- no documents allowed, except one 2-sided sheet of handwritten notes
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will $\underline{\mathbf{not}}$ answer any technical question during the exam
- readability and style of writing will be part of the grade

1 The Mersenne Cryptosystem

In what follows, p denotes a prime number of form $p = 2^n - 1$. It is called a *Mersenne prime*. Elements in \mathbb{Z}_p are represented by numbers between 0 and p-1. Given $x \in \mathbb{Z}_p$, W(x) denotes the number of 1's when writing the element x in binary.

Q.1 For all $x \in \mathbf{Z}_p^*$, prove that $W(-x \mod p) = n - W(x)$.

Q.2 For all $x, y \in \mathbb{Z}_p$, prove that $W(x + y \mod p) \leq W(x) + W(y)$. HINT: first consider y = 1, then W(y) = 1, then proceed by induction. **Q.3** For all $x, y \in \mathbb{Z}_p$, prove that $W(x \times y \mod p) \leq W(x) \times W(y)$. HINT: use binary and show $W(x2^j \mod p) = W(x)$.

Q.4 In what follows, h denotes a positive integer such that $4h^2 < n$.

After the parameters n, p, and h are set up, we define the following algorithms: Gen(n, p, h):

1: pick $F,G\in {\bf Z}_p$ random such that W(F)=W(G)=h

- 2: set $\mathsf{pk} = \frac{F}{G} \mod p$ and $\mathsf{sk} = G$
- 3: output pk and sk

Enc(pk, b):

4: pick $A, B \in \mathbf{Z}_p$ random such that W(A) = W(B) = h5: set $\mathsf{ct} = ((-1)^b \times (A \times \mathsf{pk} + B)) \mod p$ 6: output ct

where b is a plaintext from the space $\{0, 1\}$ (i.e. we encrypt only one bit). Design a decryption algorithm and prove it is correct.

Q.5 As a toy example, take n = 17, p = 131071, h = 2. Generate a key pair using $F = 2^{14} + 2^2$ and $G = 2^{10} + 2^6$. Then, encrypt b = 1 using $A = 2^{11} + 2^5$ and $B = 2^9 + 2^2$. Detail the computations and give, pk, sk, ct. HINT1: for people who have a 4-operation calculator: $a \times 2^n + b \equiv a + b \pmod{2^n - 1}$. HINT2: by thinking of how multiplication by 2 works modulo p, find a trick to perform the division by 2.

HINT3: $\frac{1}{17} \mod p = 123361.$

2 Collision Attack on CBC Mode

We consider TLS using a block cipher with *n*-bit message blocks in CBC mode. The goal of this exercise is to develop message recovery attacks, or at least to recover a sensitive part of a partially-known plaintext.

Q.1 Given 2^d independent and uniformly distributed random variables X_1, \ldots, X_{2^d} with values in $\{0, 1\}^n$, what is the expected number of pairs (i, j) with i < j such that $X_i = X_j$?

Q.2 Given 2^s independent and uniformly distributed random variables X_1, \ldots, X_{2^s} and 2^t independent and uniformly distributed random variables Y_1, \ldots, Y_{2^t} , all with values in $\{0,1\}^n$, what is the expected number of pairs (i,j) such that $X_i = Y_j$?

Q.3 Consider a list of plaintexts of 2^d blocks in total. We assume that all blocks can be split into three categories: blocks which are already known by the adversary (we denote by α the fraction of blocks in this category), blocks which are privacy-sensitive thus an interested target for the adversary (we denote by β the fraction of blocks in this category), and other blocks which are unknown but uninteresting to recover (within a fraction $1 - \alpha - \beta$). All ciphertext blocks are known by the adversary.

Assuming that the inputs of the block cipher are independent and uniform, design an attack which recovers some privacy-sensitive blocks. How large must 2^d be in order for the expected number of recovered sensitive blocks to be 1? Compute the data complexity 2^d in terms of n, α , and β .

HINT: encryption uses the CBC mode.

Q.4 Assuming that the encryption key changes every 2^r blocks, adapt the previous attack and estimate its data complexity. Application: how much data do we need for n = 64, $\alpha = \beta = \frac{1}{2}, r = \frac{n}{2}$?

Q.5 We now assume that a plaintext of 2^u blocks is encrypted many times (with a random IV). We assume that all blocks but k sensitive ones are known by the adversary and that $k \ll 2^u$. However, the purpose is now to recover *all* sensitive blocks. Estimate the data complexity (in blocks) in terms of n, u, and k.

3 PKC vs KEM vs KA

In this exercise, we compare *Public-Key Cryptosystems* (PKC), *Key Encapsulation Mechanisms* (KEM), and non-interactive *Key Agreement* schemes (KA). We formalize the interface for each of the three primitives:

PKC	KEM	KA
$-$ Setup $\xrightarrow{\$}$ pp	$- \operatorname{Setup} \xrightarrow{\$} \operatorname{pp}$	$-$ Setup $\xrightarrow{\$}$ pp
$- \operatorname{Gen}(pp) \xrightarrow{\$} (pk,sk)$	$- \operatorname{Gen}(pp) \xrightarrow{\$} (pk,sk)$	$- \operatorname{Gen}_A(pp) \xrightarrow{\$} (pk_A, sk_A)$
$- Enc(pk,pt) \xrightarrow{\$} ct$	$- \operatorname{Enc}(pk) \xrightarrow{\$} (K, ct)$	$- \operatorname{Gen}_B(pp) \xrightarrow{\$} (pk_B, sk_B)$
$- \ Dec(sk,ct) \to pt/\bot$	$- \; Dec(sk,ct) o K/ot$	$- \operatorname{KA}_A(\operatorname{sk}_A,\operatorname{pk}_B) \to K/\bot$
		$- KA_B(sk_B,pk_A) \to K/\bot$

The notation $\xrightarrow{\$}$ means that the function is probabilistic while \rightarrow is for deterministic ones. The notation K/\bot means that either some K or an error message \bot is returned.

Q.1 Define the correctness notion for *each* of the three primitives.

Q.2 The INDCPA security notion was defined for PKC in the course. We make a slight change and give a new definition: A PKC is (t, ε) -INDCPAror-secure if for all probabilistic adversary \mathcal{A} limited to a time complexity of t, we have

$$\Pr[x=1|b=0] - \Pr[x=1|b=1] \le \varepsilon$$

where b is an input bit and x is the output of the following procedure, and the probability is over all probabilistic operations:

- 1: input b
- 2: Setup $\xrightarrow{\$}$ pp
- 3: $\operatorname{Gen}(\operatorname{pp}) \xrightarrow{\$} (\operatorname{pk}, \operatorname{sk})$
- 4: pick coins at random
- 5: $\mathcal{A}(\mathsf{pp},\mathsf{pk};\mathsf{coins}) \to \mathsf{pt}_0$
- 6: pick pt_1 at random, of same length at pt_0
- 7: $\mathsf{Enc}(\mathsf{pk},\mathsf{pt}_b) \xrightarrow{\$} \mathsf{ct}$
- 8: $\mathcal{A}(\mathsf{pp},\mathsf{pk},\mathsf{ct};\mathsf{coins}) \to x$
- 9: return x

What was changed, compared to the INDCPA definition from the course? Discuss on the importance of the change.

Q.3 We define the KEM security as follows. A KEM is (t, ε) -INDCPAror-secure if for all probabilistic adversary \mathcal{A} limited to a time complexity of t, we have

$$\Pr[x=1|b=0] - \Pr[x=1|b=1] \le \varepsilon$$

where b is an input bit and x is the output of the following procedure, and the probability is over all random coins:

- 1: input b
- 2: Setup $\xrightarrow{\$}$ pp
- 3: $\operatorname{Gen}(\operatorname{pp}) \xrightarrow{\$} (\operatorname{pk}, \operatorname{sk})$
- 4: $\mathsf{Enc}(\mathsf{pk}) \xrightarrow{\$} (K_0, \mathsf{ct})$
- 5: pick K_1 at random of same length as K_0
- 6: $\mathcal{A}(\mathsf{pp},\mathsf{pk},\mathsf{ct},K_b) \xrightarrow{\$} x$
- 7: return x

Given a PKC, construct a KEM.

Prove that if the PKC is correct, then the KEM is correct.

Prove that there exists a constant τ such that for all t and ε , if the PKC is (t, ε) -INDCPArorsecure, then the KEM is $(t - \tau, \varepsilon)$ -INDCPArorsecure.

Q.4 Propose a definition for the INDCPAror-security of KA. Given a correct KA, construct a correct KEM.

Show that with the same method as in the previous question, we prove that there exists a constant τ such that for all t and ε , if the KA is (t, ε) -INDCPAror-secure, then the KEM is $(t - \tau, \varepsilon)$ -INDCPAror-secure.