
Cryptography and Security — Final Exam

Serge Vaudenay

28.1.2019

– duration: 3h
– no documents allowed, except one 2-sided sheet of handwritten notes
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade



1 The Mersenne Cryptosystem

In what follows, p denotes a prime number of form p = 2n − 1. It is called a Mersenne prime.
Elements in Zp are represented by numbers between 0 and p−1. Given x ∈ Zp, W (x) denotes
the number of 1’s when writing the element x in binary.

Q.1 For all x ∈ Z∗
p, prove that W (−x mod p) = n−W (x).
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Q.2 For all x, y ∈ Zp, prove that W (x+ y mod p) ≤ W (x) +W (y).
HINT: first consider y = 1, then W (y) = 1, then proceed by induction.
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Q.3 For all x, y ∈ Zp, prove that W (x× y mod p) ≤ W (x)×W (y).
HINT: use binary and show W (x2j mod p) = W (x).
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Q.4 In what follows, h denotes a positive integer such that 4h2 < n.
After the parameters n, p, and h are set up, we define the following algorithms:

Gen(n, p, h):
1: pick F,G ∈ Zp random such that W (F ) = W (G) = h
2: set pk = F

G mod p and sk = G
3: output pk and sk

Enc(pk, b):
4: pick A,B ∈ Zp random such that W (A) = W (B) = h
5: set ct =

(
(−1)b × (A× pk+B)

)
mod p

6: output ct

where b is a plaintext from the space {0, 1} (i.e. we encrypt only one bit).
Design a decryption algorithm and prove it is correct.
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Q.5 As a toy example, take n = 17, p = 131 071, h = 2. Generate a key pair using F = 214+22

and G = 210 + 26. Then, encrypt b = 1 using A = 211 + 25 and B = 29 + 22. Detail the
computations and give, pk, sk, ct.
HINT1: for people who have a 4-operation calculator: a× 2n + b ≡ a+ b (mod 2n − 1).
HINT2: by thinking of how multiplication by 2 works modulo p, find a trick to perform
the division by 2.
HINT3: 1

17 mod p = 123 361.
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2 Collision Attack on CBC Mode

We consider TLS using a block cipher with n-bit message blocks in CBC mode. The goal of
this exercise is to develop message recovery attacks, or at least to recover a sensitive part of
a partially-known plaintext.

Q.1 Given 2d independent and uniformly distributed random variables X1, . . . , X2d with values
in {0, 1}n, what is the expected number of pairs (i, j) with i < j such that Xi = Xj?

Q.2 Given 2s independent and uniformly distributed random variables X1, . . . , X2s and 2t

independent and uniformly distributed random variables Y1, . . . , Y2t , all with values in
{0, 1}n, what is the expected number of pairs (i, j) such that Xi = Yj?
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Q.3 Consider a list of plaintexts of 2d blocks in total. We assume that all blocks can be split
into three categories: blocks which are already known by the adversary (we denote by α the
fraction of blocks in this category), blocks which are privacy-sensitive thus an interested
target for the adversary (we denote by β the fraction of blocks in this category), and other
blocks which are unknown but uninteresting to recover (within a fraction 1− α− β). All
ciphertext blocks are known by the adversary.
Assuming that the inputs of the block cipher are independent and uniform, design an
attack which recovers some privacy-sensitive blocks. How large must 2d be in order for
the expected number of recovered sensitive blocks to be 1? Compute the data complexity
2d in terms of n, α, and β.
HINT: encryption uses the CBC mode.
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Q.4 Assuming that the encryption key changes every 2r blocks, adapt the previous attack
and estimate its data complexity. Application: how much data do we need for n = 64,
α = β = 1

2 , r = n
2 ?
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Q.5 We now assume that a plaintext of 2u blocks is encrypted many times (with a random
IV). We assume that all blocks but k sensitive ones are known by the adversary and that
k ≪ 2u. However, the purpose is now to recover all sensitive blocks. Estimate the data
complexity (in blocks) in terms of n, u, and k.
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3 PKC vs KEM vs KA

In this exercise, we compare Public-Key Cryptosystems (PKC), Key Encapsulation Mecha-
nisms (KEM), and non-interactive Key Agreement schemes (KA). We formalize the interface
for each of the three primitives:

PKC

– Setup
$−→ pp

– Gen(pp)
$−→ (pk, sk)

– Enc(pk, pt)
$−→ ct

– Dec(sk, ct) → pt/⊥

KEM

– Setup
$−→ pp

– Gen(pp)
$−→ (pk, sk)

– Enc(pk)
$−→ (K, ct)

– Dec(sk, ct) → K/⊥

KA

– Setup
$−→ pp

– GenA(pp)
$−→ (pkA, skA)

– GenB(pp)
$−→ (pkB, skB)

– KAA(skA, pkB) → K/⊥
– KAB(skB, pkA) → K/⊥

The notation
$−→ means that the function is probabilistic while → is for deterministic ones.

The notation K/⊥ means that either some K or an error message ⊥ is returned.

Q.1 Define the correctness notion for each of the three primitives.
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Q.2 The INDCPA security notion was defined for PKC in the course. We make a slight change
and give a new definition: A PKC is (t, ε)-INDCPAror-secure if for all probabilistic adver-
sary A limited to a time complexity of t, we have

Pr[x = 1|b = 0]− Pr[x = 1|b = 1] ≤ ε

where b is an input bit and x is the output of the following procedure, and the probability
is over all probabilistic operations:

1: input b

2: Setup
$−→ pp

3: Gen(pp)
$−→ (pk, sk)

4: pick coins at random
5: A(pp, pk; coins) → pt0
6: pick pt1 at random, of same length at pt0

7: Enc(pk, ptb)
$−→ ct

8: A(pp, pk, ct; coins) → x
9: return x

What was changed, compared to the INDCPA definition from the course?
Discuss on the importance of the change.
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Q.3 We define the KEM security as follows. A KEM is (t, ε)-INDCPAror-secure if for all prob-
abilistic adversary A limited to a time complexity of t, we have

Pr[x = 1|b = 0]− Pr[x = 1|b = 1] ≤ ε

where b is an input bit and x is the output of the following procedure, and the probability
is over all random coins:

1: input b

2: Setup
$−→ pp

3: Gen(pp)
$−→ (pk, sk)

4: Enc(pk)
$−→ (K0, ct)

5: pick K1 at random of same length as K0

6: A(pp, pk, ct,Kb)
$−→ x

7: return x

Given a PKC, construct a KEM.
Prove that if the PKC is correct, then the KEM is correct.
Prove that there exists a constant τ such that for all t and ε, if the PKC is (t, ε)-INDCPAror-
secure, then the KEM is (t− τ, ε)-INDCPAror-secure.
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Q.4 Propose a definition for the INDCPAror-security of KA. Given a correct KA, construct a
correct KEM.
Show that with the same method as in the previous question, we prove that there exists a
constant τ such that for all t and ε, if the KA is (t, ε)-INDCPAror-secure, then the KEM
is (t− τ, ε)-INDCPAror-secure.
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