
Cryptography and Security — Midterm Exam

Serge Vaudenay

5.12.2018

– duration: 1h45
– no documents allowed, except one 2-sided sheet of handwritten notes
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade
– answers should not be written with a pencil



1 Design Challenges with Bad Requirements

This exercise proposes two totally independent design challenges. Students with the best
answer will get the full points. Others will have partial points. (To compare the answers, we
check if all requirements are satisfied and we then look at the complexity of the algorithms.)

Q.1 (Design challenger 1.) You must design a block cipher ({0, 1}k, {0, 1}n,Enc,Dec) (following
the definition from the course in which k is the key length and n is the block length)
which is secure against key recovery under chosen plaintext and ciphertext attacks. More
precisely, it must be (q, t, 2−k)-secure for any q and t, i.e. whatever the number of queries
q and the time complexity t, the probability of success should not be better than the
probability of success 2−k of an attack which guesses the key at random.

Q.2 (Design challenger 2.) Given some parameters k and n, you must design two algorithms
Enc and Dec with the following interface:
– Enc takes two inputs K ∈ {0, 1}k and pt ∈ {0, 1}n and produce one output ct.
– Dec takes two inputs K ∈ {0, 1}k and ct and produce one output pt′.
The obtained pair (Enc,Dec) must be secure against decryption under chosen plaintext
attack. More precisely, it must be (q, t, 2−n)-secure for any q and t, i.e. whatever the
number of queries q and the time complexity t, the probability of success should not be
better than the probability of success 2−n of an attack which guesses pt at random.



2 RSA with Carmichael Numbers

We recall that by definition, a Carmichael number is an integer n which is the product of
several (at least two) pairwise different prime numbers pi such that pi − 1 divides n− 1. We
know that a positive integer n is a Carmichael number if and only if it is not prime and for
any b ∈ Z∗

n, we have bn−1 mod n = 1.
In what follows, we consider two Carmichael numbers p and q, and n = pq. We denote

δ = (p− 1)× (q − 1).

Q.1 Assuming that p and q are coprime, formally prove that xδ mod n = 1 for all x ∈ Z∗
n?

In what follows, we assume that p and q are coprime.

Q.2 If e and d are integers such that ed mod δ = 1, show that for all x ∈ Z∗
n, we have

xed mod n = x.



Q.3 With the same notations, prove that xed mod n = x for all x ∈ Zn.

Q.4 Is it a good idea to use such variant of RSA?



3 Invalid Curve Attack over ECDH

The ECDH protocol uses an elliptic curve defined by some domain parametersD = (q, a, b, P, n),
where q and n are prime, a, b ∈ Zq, and P is a point of order n on the elliptic curve over
Zq defined by the equation y2 = x3 + ax + b. In ECDH, each participant U generates his
ephemeral secret key skU ∈ Z∗

n and its ephemeral public key pkU = skU × P . Two partici-
pants A and B end up with a secret skA × pkB = skB × pkA from which they extract some
key DHKey. We focus on Bluetooth using the P256 curve. In Bluetooth, two devices which
want to communicate without knowing each other first run the ECDH protocol to share a
secret DHKey, then authenticate the x-coordinates of exchanged public keys by using an al-
ternate communication channel. So, the objective of an adversary could be to interfere with
the communication without modifying the x-coordinates so that one or both participants end
up with some DHKey which is known by the adversary. The goal of this exercise is to mount
such attack for the Bluetooth implementation of ECDH.

In Bluetooth, ECDH is run as follows: each participant U interacting with his counterpart
Ū does what follows:

– U sets up the parameters D of P256.
– U picks skU ∈ Z∗

n at random and computes pkU = skU × P . We denote by (xU , yU ) the
coordinates of pkU . The computation is done with the double-and-add algorithm.

– U sends (xU , yU ) to Ū .
– U receives (xŪ , yŪ ) from Ū and verifies that it is not the point at infinity.
– U computes (Kx,Ky) = skU×(xŪ , yŪ ). This computation is done with the double-and-add

algorithm.
– U throws away Ky and computes a KDF function on Kx to obtain DHKey.
– After that, U authenticates xU , xŪ and some other values by some ad-hoc means.

We recall how point addition and point doubling is done. We denote P = (xP , yP ), Q =
(xQ, yQ), R = (xR, yR). For P ̸= Q and xP = xQ, P + Q is the point at infinity. Otherwise,
R = P +Q is computed by first computing

λ =


yP−yQ
xP−xQ

mod q if P ̸= Q
3x2

P+a
2yP

mod q if P = Q
xR = λ2 − 2xP mod q yR = −yP − λ(xR − xP ) mod q

Q.1 Based on what you have learned on the Diffie-Hellman protocol, tell what is missing and
how we should have implemented it.



Q.2 Given an attack in which the adversary replaces yŪ by some value y′
Ū
such that (xŪ , y

′
Ū
)

lies on a curve of equation y2 = x3 + ax+ b′ and (xŪ , y
′
Ū
) has order 2 on this curve. Give

the method to compute b′ and y′
Ū
from D and xŪ .

Q.3 Prove that the algorithm mapping an input point Q to skU×Q on the curve y2 = x3+ax+b
and on the curve y2 = x3+ ax+ b′ by using the double-and-add algorithm are exactly the
same algorithm. Deduce that by applying the previous attack, the adversary can easily
compute DHKey which is obtained by U .

Q.4 Applying the previous attack in both directions, prove that both participants obtain the
same DHKey with probability 1

4 .


