
Cryptography and Security — Midterm Exam

Solution

Serge Vaudenay

5.12.2018

– duration: 1h45
– no documents allowed, except one 2-sided sheet of handwritten notes
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade
– answers should not be written with a pencil

The exam grade follows a linear scale in which each question has the same weight.

1 Design Challenges with Bad Requirements

This exercise proposes two totally independent design challenges. Students with the best
answer will get the full points. Others will have partial points. (To compare the answers, we
check if all requirements are satisfied and we then look at the complexity of the algorithms.)

Q.1 (Design challenger 1.) You must design a block cipher ({0, 1}k, {0, 1}n,Enc,Dec) (following
the definition from the course in which k is the key length and n is the block length)
which is secure against key recovery under chosen plaintext and ciphertext attacks. More
precisely, it must be (q, t, 2−k)-secure for any q and t, i.e. whatever the number of queries
q and the time complexity t, the probability of success should not be better than the
probability of success 2−k of an attack which guesses the key at random.

We can propose Enc(K, pt) = pt and Dec(K, ct) = ct. We obtain a correct block
cipher, i.e. Dec(K,Enc(K, pt)) = pt all the time. Furthermore, it is perfectly secure
against key recovery: K is actually never used so nothing even leaks about K.

Q.2 (Design challenger 2.) Given some parameters k and n, you must design two algorithms
Enc and Dec with the following interface:
– Enc takes two inputs K ∈ {0, 1}k and pt ∈ {0, 1}n and produce one output ct.
– Dec takes two inputs K ∈ {0, 1}k and ct and produce one output pt′.
The obtained pair (Enc,Dec) must be secure against decryption under chosen plaintext
attack. More precisely, it must be (q, t, 2−n)-secure for any q and t, i.e. whatever the
number of queries q and the time complexity t, the probability of success should not be
better than the probability of success 2−n of an attack which guesses pt at random.

We can propose algorithms doing nothing: Enc(K, pt) = ⊥ and Dec(K, ct) = ⊥. This
is perfectly secure against decryption attacks. Actually, nothing ever leaks about pt.
What must be missing in the requirements is the correctness notion of the cryptosys-
tem, i.e. Dec(K,Enc(K, pt)) = pt all the time. The proposed cryptosystem is not
correct.



2 RSA with Carmichael Numbers

We recall that by definition, a Carmichael number is an integer n which is the product of
several (at least two) pairwise different prime numbers pi such that pi − 1 divides n− 1. We
know that a positive integer n is a Carmichael number if and only if it is not prime and for
any b ∈ Z∗

n, we have bn−1 mod n = 1.
In what follows, we consider two Carmichael numbers p and q, and n = pq. We denote

δ = (p− 1)× (q − 1).

Q.1 Assuming that p and q are coprime, formally prove that xδ mod n = 1 for all x ∈ Z∗
n?

In what follows, we assume that p and q are coprime.

We have
xδ mod p = (xp−1 mod p)q−1 mod p = 1q−1 mod p = 1

and similarly, xδ mod q = 1.
With the condition gcd(p, q) = 1, we can apply the Chinese Remainder Theorem and
obtain xδ mod n = 1.

Q.2 If e and d are integers such that ed mod δ = 1, show that for all x ∈ Z∗
n, we have

xed mod n = x.

We write the Euclidean division ed = 1 + kδ. We have

xed ≡ x1+kδ ≡ x× (xδ)k ≡ x (mod n)

Q.3 With the same notations, prove that xed mod n = x for all x ∈ Zn.

If k is a prime factor of p or q, for x ∈ Z∗
k, we have xδ mod k = 1 because k − 1

divides p− 1 or q − 1 and both divide δ. Hence, xed mod k = x. For x = 0, we also
have xed mod k = x. Therefore, for all x ∈ Z, we have xed ≡ x (mod k). Since p
and q are coprime and product of pairwise different primes, n is also a product of
pairwise different primes. We have xeq ≡ x modulo every prime factor of n. So, we
have it as well modulo n, due to the Chinese Remainder Theorem.

Q.4 Is it a good idea to use such variant of RSA?

Carmichael numbers are harder to generate than prime numbers, so such variant
would be terrible to implement. Additionally, we may end up with n having small
prime factors. So, it would be easy to find, at least a partial factoring of n. The
hardness of RSA would degrade substantially.



3 Invalid Curve Attack over ECDH

The following exercise is inspired from Breaking the Bluetooth Pairing — Fixed
Coordinate Invalid Curve Attack by Biham and Neumann.

The ECDH protocol uses an elliptic curve defined by some domain parametersD = (q, a, b, P, n),
where q and n are prime, a, b ∈ Zq, and P is a point of order n on the elliptic curve over
Zq defined by the equation y2 = x3 + ax + b. In ECDH, each participant U generates his
ephemeral secret key skU ∈ Z∗

n and its ephemeral public key pkU = skU × P . Two partici-
pants A and B end up with a secret skA × pkB = skB × pkA from which they extract some
key DHKey. We focus on Bluetooth using the P256 curve. In Bluetooth, two devices which
want to communicate without knowing each other first run the ECDH protocol to share a
secret DHKey, then authenticate the x-coordinates of exchanged public keys by using an al-
ternate communication channel. So, the objective of an adversary could be to interfere with
the communication without modifying the x-coordinates so that one or both participants end
up with some DHKey which is known by the adversary. The goal of this exercise is to mount
such attack for the Bluetooth implementation of ECDH.

In Bluetooth, ECDH is run as follows: each participant U interacting with his counterpart
Ū does what follows:

– U sets up the parameters D of P256.
– U picks skU ∈ Z∗

n at random and computes pkU = skU × P . We denote by (xU , yU ) the
coordinates of pkU . The computation is done with the double-and-add algorithm.

– U sends (xU , yU ) to Ū .
– U receives (xŪ , yŪ ) from Ū and verifies that it is not the point at infinity.
– U computes (Kx,Ky) = skU×(xŪ , yŪ ). This computation is done with the double-and-add

algorithm.
– U throws away Ky and computes a KDF function on Kx to obtain DHKey.
– After that, U authenticates xU , xŪ and some other values by some ad-hoc means.

We recall how point addition and point doubling is done. We denote P = (xP , yP ), Q =
(xQ, yQ), R = (xR, yR). For P ̸= Q and xP = xQ, P + Q is the point at infinity. Otherwise,
R = P +Q is computed by first computing

λ =


yP−yQ
xP−xQ

mod q if P ̸= Q
3x2

P+a
2yP

mod q if P = Q
xR = λ2 − 2xP mod q yR = −yP − λ(xR − xP ) mod q

Q.1 Based on what you have learned on the Diffie-Hellman protocol, tell what is missing and
how we should have implemented it.

What misses is the verification that the received public key lies on the group generated
by P in the curve. It could have been implemented by first checking that the received
key is not the point at infinity, that its coordinates satisfy the equation of the curve,
and that when multiplied by n we obtain the point at infinity.

Q.2 Given an attack in which the adversary replaces yŪ by some value y′
Ū
such that (xŪ , y

′
Ū
)

lies on a curve of equation y2 = x3 + ax+ b′ and (xŪ , y
′
Ū
) has order 2 on this curve. Give

the method to compute b′ and y′
Ū
from D and xŪ .



An element had order 2 if its y-coordinate is 0. Hence, y′
Ū
= 0. The curve containing

the obtained point has parameter b′ = −x3
Ū
− axŪ .

Q.3 Prove that the algorithm mapping an input point Q to skU×Q on the curve y2 = x3+ax+b
and on the curve y2 = x3+ ax+ b′ by using the double-and-add algorithm are exactly the
same algorithm. Deduce that by applying the previous attack, the adversary can easily
compute DHKey which is obtained by U .

Point addition and point doubling never use the b parameter. So, the computation on
both curve imply the same computations. We deduce that during the attack, U will
in fact compute skU×(xŪ , y

′
Ū
) on the invalid curve. Since U receives a point of order

2 in a new curve and that U applies the double-and-add algorithm in this curve (as
it does not make the difference between b and b′), we obtain (Kx,Ky) in a group of
order 2, hence either (Kx,Ky) equal to the point at infinity, or (Kx,Ky) = (xŪ , yŪ ).
So, the extracted x-coordinate is either ∞ or xŪ . This only depends on the parity
of skU . The adversary cannot predict this parity but can deduce which one it correct
by looking at the forthcoming encrypted communication. It will use KDF applied to
either value.

Q.4 Applying the previous attack in both directions, prove that both participants obtain the
same DHKey with probability 1

4 .

The extracted x-coordinate is ∞ with probability 1
2 , for each participant. So, with

probability 1
4 , both are equal to ∞ and are henceforth the same.


