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– duration: 1h45

– no documents allowed, except one 2-sided sheet of handwritten notes

– a pocket calculator is allowed

– communication devices are not allowed

– the exam invigilators will not answer any technical question during the exam

– readability and style of writing will be part of the grade

– answers should not be written with a pencil

The exam grade follows a linear scale in which each question has the same weight.

1 GF(256) Computations

AES used GF(28) represented by polynomials reduced modulo x8 + x4 + x3 + x+ 1 in Z2[x].
The InvMixColumns step of the AES decryption algorithm multiplies

M−1 =


0x0e 0x0b 0x0d 0x09

0x09 0x0e 0x0b 0x0d

0x0d 0x09 0x0e 0x0b

0x0b 0x0d 0x09 0x0e


by a 4-dimensional vector with coordinates in GF(28).

Q.1 What are the polynomials represented by the bytes 0x0e, 0x0b, 0x0d, and 0x09?

The hexadecimal representation is a shorthand for the binary representation which
lists the coefficients of the polynomial. The most significant bit is the coefficient of
highest degree.

0x0e = x3 + x2 + x

0x0b = x3 + x+ 1

0x0d = x3 + x2 + 1

0x09 = x3 + 1

Q.2 Multiply the vector (0x0e, 0x0b, 0x0d, 0x09) by the GF(28) element 0x02. (Response must
be hexadecimal.)



As 0x02 = x, we have

0x02× (0x0e, 0x0b, 0x0d, 0x09) = (0x1c, 0x16, 0x1a, 0x12)

Q.3 Apply InvMixColumns on the column (0x01, 0x02, 0x10, 0x40)t. (Response must be hex-
adecimal.)

M−1 =


0x0e 0x0b 0x0d 0x09

0x09 0x0e 0x0b 0x0d

0x0d 0x09 0x0e 0x0b

0x0b 0x0d 0x09 0x0e

×

0x01

0x02

0x10

0x40

 =


0xbe

0xc8

0x09

0x2c





2 DH in an RSA Group

A strong prime is an odd prime number p such that p−1
2 is also a prime number. A strong RSA

modulus is a number n = pq which is the product of two different strong primes p and q. In
this exercise, we consider such a strong RSA modulus and we denote p = 2p′+1, q = 2q′+1,
and n′ = p′q′.

Q.1 Prove that there exists an element g ∈ Z∗
n of order n′.

Thanks to the Chinese Remainder Theorem, we know that gx mod n = 1 is equivalent
to gx mod p = 1 and gx mod q = 1 (this is due to n = pq and p and q being coprime).
We know that Z∗

p is cyclic of order p− 1 (this is due to p being prime). Hence, there
exists an element h ∈ Z∗

p of order p − 1 = 2p′. The element gp = h2 mod p is an
element of Z∗

p of order p′. Similarly, there exists an element gq of Z∗
q of order q′.

We let g ∈ Zn be such that g mod p = gp and g mod q = gq, thanks to the Chinese
Remainder Theorem. We have that gx mod n = 1 is equivalent to x is a multiple
of p′ and q′. Since p′ and q′ are coprime, this is equivalent to x being a multiple of
n′ = p′q′. Hence, gx mod n = 1 is equivalent to x is a multiple of n′. We deduce that
g has order n′ in Z∗

n.

Q.2 How to check group membership in the subgroup ⟨g⟩ of Z∗
n?

We have seen in the course that x ∈ ⟨gp⟩, the subgroup of Z∗
p is equivalent to xp

′
mod

p = 1. We show below that x ∈ ⟨g⟩ is equivalent to xn
′
mod n = 1.

The x ∈ ⟨g⟩ =⇒ xn
′
mod n = 1 direction is trivial: since g has order n′, any power

of g has an n′th power equal to 1.
We now prove xn

′
mod n = 1 =⇒ x ∈ ⟨g⟩. We assume that xn

′
mod n = 1. This im-

plies that xn
′
mod p = 1. Let d = 1

q′ mod 2p′ (we know that q′ and 2p′ are coprime).

We know that yd mod p is the unique q′th root of y modulo p. Hence,

1 ≡ (xn
′
)d ≡ xp

′
(mod p)

We deduce that x belongs to the subgroup of Z∗
p generated by g. Let x ≡ gi (mod p).

Similarly, we show there exist j such that x ≡ gj (mod q). We let k be such that
k mod p′ = i and k mod q′ = j (we use the Chinese Remainder Theorem for the
two coprime p′ and q′). We have x ≡ gk (mod p) and x ≡ gk (mod q). Hence,
x ∈ ⟨g⟩.

Q.3 If n and n′ are known, show that we can easily compute p and q.

We have n = (2p′ + 1)(2q′ + 1) = 4p′q′ + 2(p′ + q′) + 1 and n′ = p′q′. Hence, p′ and
q′ are the two roots of x2 − n−4n′−1

2 x+ n′ = 0. We can compute them by solving the
equation over the integers. We deduce p and q.

Q.4 We consider a Diffie-Hellman protocol in the subgroup ⟨g⟩ of Z∗
n. Prove that if the fac-

torization of n must be kept secret, there is a big problem to implement the protocol.



If the factorization of n is known, there is no advantage in doing the Diffie-Hellman
protocol modulo n: we can do it modulo p and modulo q separately. So, we assume
there can only be an advantage when the factorization of n is secret.
The protocol would require to check subgroup membership. With the above g, the only
way we know for that is to raise to the power n′ but this leaks the factorization of
n. We could further prove that membership to ⟨g⟩ is equivalent to being a quadratic
residue modulo p and modulo q at the same time. But distinguishing such elements
from elements with Jacobi symbol (./n) equal to 1 is believed to be a hard problem.
Hence, we believe that there is no meaningful way to have a Diffie-Hellman protocol
in ⟨g⟩.

Q.5 Prove that the subgroup of Z∗
n of all x such that (x/n) = +1 is cyclic and of order 2n′.

By CRT-combining a generator modulo p and modulo q, we obtain some h such that
hx mod n = 1 is equivalent to x being a multiple of 2p′ and 2q′ at the same time,
hence being a multiple of 2p′q′. Hence, h has order 2p′q′ = 2n′.
h has Legendre symbols (h/p) and (h/q) which are equal. Thus, h is such that all
powers of h have Legendre symbols (./p) and (./q) which are equal. Hence, the Jacobi
symbol (./n) is equal to +1. The subgroup spanned by h is included in the subgroup
of residues with Jacobi symbol equal to +1. Since the full group has order 4n′ and
that there exists elements with Jacobi symbol equal to −1, this subgroup cannot have
an order larger than 2n′ (because it must be a factor of 4n′ and there is no larger
factor except 4n′ itself). Hence, all residues of Jacobi symbol +1 are generated by h.
Furthermore, membership to ⟨h⟩ is equivalent to having a Jacobi symbol (./n) equal
to +1. We have an easy membership test.

Q.6 Propose a meaningful Diffie-Hellman protocol in a cyclic subgroup of Z∗
n which keeps the

factorization of n secret. (Carefuly check all what we need to add in the regular Diffie-
Hellman protocol for security reasons.)



The Diffie-Hellman protocol is defined over a cyclic group. One problem is that Z∗
n

(which has order 4p′q′) is not cyclic. Indeed, there are four square roots of 1 so it
has three elements of order 2. Cyclic groups cannot have more than one element of
order 2. We have seen that the subgroup of order p′q′ may require to leak p and q.
Thus, we can try a subgroup of order 2p′q′.
We design a Diffie-Hellman protocol in ⟨h⟩ from the previous question. We check
subgroup membership by checking the Jacobi symbol.
We must avoid the subgroups of ⟨h⟩. The trivial subgroup {1} is checked trivially.
The subgroup of order 2 is {1,−1}. (The two other square roots of 1 are not in ⟨h⟩.)
It is also checked trivially.
The other subgroups are rare. Indeed, if an adversary manages to find an element
x of them, he can factor n as follows: we have x2p

′
mod n = 1 or x2q

′
mod n = 1.

Let assume without loss of generality that x2p
′
mod n = 1. We have x2p

′
mod q = 1.

Since p′ is invertible modulo q′, we deduce that x2 mod q = 1. Hence, x2 − 1 is a
multiple of q. It cannot be a multiple of n, otherwise we would fall back to the cases
x ∈ {1,−1} which was eliminated. Hence, gcd(x2 − 1, n) = q. We can compute this
using the Euclid algorithm and deduce p and q. Therefore, assuming that factoring
is hard, the adversary will not be able to find an element in another subgroup.
In the case Alice and Bob know the factorization, they should not help the adversary
for that. Hence, they generate a secret key in Z∗

2n′:
– Participants pick a secret x ∈ Z∗

2n′ and send y = gx mod n.
– Upon receiving z from counterpart, participants check that (z/n) = +1 and that

z mod n ̸∈ {+1, n− 1}.
– The shared key is KDF(zx mod n).
In the case Alice and Bob ignore the factorization, they have a little problem to
sample their secret. For that they can generate some x of “double size”, i.e. in
{2, . . . , n2 − 1}.
– Participants pick a secret x ∈ {2, . . . , n2 − 1} and compute y = gx mod n.
– If y = 1 or y = n− 1, try again.
– Upon receiving z from counterpart, participants check that (z/n) = +1 and that

z mod n ̸∈ {+1, n− 1}.
– The shared key is KDF(zx mod n).



3 Attribute-Based Encryption

Let G1 and G2 be two groups with multiplicative notations and let e : G1×G1 → G2 be a non-
degenerate bilinear map. We assume that G1 is cyclic, of prime order p, and generated by some
element g. We consider two parameters n and d with d ≤ n. The tuple pp = (G1, G2, p, g, n, d)
is a vector of public parameters. We consider the following algorithms:

Genmaster(pp):
1: parse pp = (G1, G2, p, g, n, d)
2: pick t1, . . . , tn, y ∈ Zp at random
3: T1 ← gt1 , ..., Tn ← gtn , Y ← e(g, g)y = e(gy, g)
4: pk← (T1, . . . , Tn, Y )
5: mk← (t1, . . . , tn, y)
6: return (pk,mk)

Gen(pp,mk, A): ▷ A ⊆ {1, . . . , n}
7: parse pp = (G1, G2, p, g, n, d)
8: pick a random polynomial q(x) ∈ Zp[x] of degree d− 1 such that q(0) = y

9: for each i ∈ A, Di ← g
q(i)
ti

10: sk← (Di)i∈A
11: return sk

Enc(pp, pk,m,B): ▷ m ∈ G2, B ⊆ {1, . . . , n}
12: parse pp = (G1, G2, p, g, n, d)
13: pick s ∈ Zp at random
14: E ← mY s

15: for each i ∈ B, Ei ← T s
i

16: ct← (B,E, (Ei)i∈B)
17: return ct

In our system, Genmaster returns a public key pk (given to anyone with pp) and a master
secret mk for a trusted dealer. Each user U has a set of attributes AU and the trusted dealer
gives him a secret skU which is generated by Gen(pp,mk, AU ). Anyone can encrypt a message
m with some set of attributes B.

Q.1 Express ct in terms of pp, mk, m, and s.

We have E = mY s = me(g, g)ys and Ei = T s
i = gtis for each i ∈ A.

Q.2 Show how to decrypt ct given pp and pk by assuming that the discrete logarithm problem
is easy. (Assume B non empty.)

Given one i ∈ B, the discrete logarithm of Ti = gti gives ti. Then, E
1
ti

mod p

i = gs.
Then, E/Y s = m.

Q.3 Show that if A ∩B has cardinality at least d, then we can easily decrypt ct given pp and
sk. (I.e., we do not need to compute a discrete logarithm.)



Let C ⊆ A∩B of cardinality exactly d. Let C = {i1, . . . , id}. There exists some coef-
ficients λ1, . . . , λd (the Lagrange coefficients) such that

∑d
j=1 λjq(ij) = q(0) for any

polynomial q of degree d− 1. Actually, the following formula gives those coefficients:

λj =

∏
k∈{1,...,j−1,j+1,...,d} ik∏

k∈{1,...,j−1,j+1,...,d} (ik − ij)

Hence,

d∏
j=1

e(Dij , Eij )
λj =

d∏
j=1

e(g, g)sλjq(ij) = e(g, g)sq(0) = e(g, g)sy = Y s

Therefore, we can divide E by this to obtain m.


