
Cryptography and Security — Midterm Exam

Solution

Serge Vaudenay

18.11.2021

– duration: 1h45
– no documents allowed, except one 2-sided sheet of handwritten notes
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade
– answers should not be written with a pencil

The exam grade follows a linear scale in which each question has the same weight.

1 Diffie-Hellman in an RSA subgroup

The crypto apprentice wants to run the Diffie-Hellman protocol, but instead of running it
in a subgroup of Z∗

p with a prime p, he decides to run it in a subgroup of Z∗
n with an RSA

modulus n. He wants n to remain hard to factor, “for more security”. One goal of the exercise
is to see if n indeed remains hard to factor.

We let n = pq. We let g ∈ Z∗
n and we denote by m its order in the group. We denote p′

resp. q′ the multiplicative order of g in Z∗
p resp. Z∗

q . We assume that n and g are known by
everyone.

Q.1 Prove that both p′ and q′ divide m.

p is a factor of n. We have gm mod n = 1 so gm mod p = 1 as well. Hence, m is a
multiple of the order of g in Z∗

p, which is p′. Therefore, p′ divides m.
The same argument holds with q.

Q.2 In this question, we assume that q′ = 1 and m > 1. Prove that anyone can factor n easily.

Since q′ = 1, we have g mod q = 1. Hence, q is a factor of gcd(g − 1, n) which is a
factor of n. If gcd(g− 1, n) = n, this implies that g mod n = 1, which is not possible
because m > 1. Hence, gcd(g− 1, n) = q. We can compute the factor q of n by using
the Euclid algorithm. We deduce p = n/q which gives the full factorization of n.

Q.3 We now assume that p′ and q′ are two different prime numbers. Prove that m = p′q′.

We first observe that gp
′q′ mod p = gp

′q′ mod q = 1 so gp
′q′ mod n = 1 due to the

Chinese Remainder Theorem. Thus, m divides p′q′.
We have gm mod n = 1 so gm mod p = 1 so p′ divides m. Similarly, q′ divides m.
Hence, lcm(p′, q′) divides m. (Recall that for any triplet of integers a, b, c such that
a|c and b|c, we have lcm(a, b)|c.) Since p′ and q′ are different primes, lcm(p′, q′) = p′q′

which divides m.
Therefore, m = p′q′.

Q.4 We still assume that p′ and q′ are different primes. We also assume that m is known and
easy to factor. Fully specify a Diffie-Hellman protocol.
Pay special attention to protection against subgroup issues.

Since m = p′q′ (due to the previous question), m is known, and m is easy to factor,
p′ and q′ are also known.
Alice picks a ∈ Z∗

m and sends A = ga mod n to Bob. Bob picks b ∈ Z∗
m and sends

B = gb mod n to Alice. By picking a and b in Z∗
m, this makes sure that A and B

both have multiplicative order m, so they do not belong to a subgroup.
Alice verifies 1 < B < n, Bp′ mod n ̸= 1, Bq′ mod n ̸= 1, and Bm mod n = 1. This
ensures that B has multiplicative order m.
Similarly, Bob verifies 1 < A < n, Ap′ mod n ̸= 1, Aq′ mod n ̸= 1, and Am mod n =
1.
They both compute C = Ba mod n = Ab mod n = gab mod n. Finally, they apply a
KDF on C to obtain the final output K.

Q.5 What is the problem if m is not known by Alice or Bob?

They have a problem to select their ephemeral secret at random. Ideally, they should
pick it in Z∗

m.

Q.6 If m is prime, prove that either p′ = m and q′ = 1, or p′ = 1 and q′ = m, or p′ = q′ = m.

We have seen that both p′ and q′ divide m. Since m is prime, p′ = 1 or p′ = m.
Similarly, q′ = 1 or q′ = m. If p′ = q′ = 1, we have g1 mod p = 1 and g1 mod q = 1
so g mod n = 1 thus m = 1 which contradicts that m is prime. Hence, we can
conclude.

Q.7 Is it a good idea to select m prime?

We have seen it is not a good idea to have p′ = 1 or q′ = 1 (otherwise, we can factor
n and there is no point in using an RSA group). What is left is the p′ = q′ = m
case.
With p′ = q′ = m, we can write p = αm+1, q = βm+1, so n = αβm2+(α+β)m+1.
This special form with m known may ease factorization.
For instance, when α+ β < m, we can recover

α+ β =
n− 1

m
mod m

We can also recover

αβ =

⌊
n− 1

m2

⌋
Then, α and β are the roots of the equation

x2 − (α+ β)x+ αβ = 0

from which we deduce p and q.
When α+ β ≥ m, it is more complicated.

2 ElGamal over Exponentials

We consider the following public-key cryptosystem:

– Setup(1λ): generate a prime q of size λ and parameters for a cyclic group of order q. Select
a generator g of this group. Set pp = (parameters, q, g). Given pp, we assume that group
operations are done in polynomial time complexity in λ.

– Gen(pp): pick x ∈ Zq uniformly and y = gx in the group. The secret key is x and the
public key is y.

– Enc(pp, y, pt): pick r ∈ Zq uniformly and output the ciphertext (u, v) = (gr, gptyr).
– Dec(pp, x, u, v): solve gpt = v/ux in pt.

We assume that the encryption domain is the set of small integers: pt ∈ {0, 1, . . . , P (λ)− 1},
where P denotes a polynomial which will be discussed.

Q.1 Assuming that 2λ−1 ≥ P (λ), prove that the cryptosystem is correct.

If we encrypt correctly with u = gr and v = gptyr, then v/ux = gptyr/grx = gpt. So,
pt is a solution to the equation to solve. The value of the solution is unique modulo
q. Since q > 2λ−1 ≥ P (λ), the solution in the encryption domain is unique. Hence,
we have correctness.

Q.2 Propose a (non-polynomial) algorithm to do a key recovery attack and give its complexity.
Note: correct answers with the lowest complexity will get more points.

The generic baby-step giant-step algorithm computes x from y within a complexity

of O(
√
q) group operations. So, the complexity is O(2

λ
2) group operations.

Q.3 Propose a polynomial-time algorithm to implement Dec.

We can use the baby-step giant-step algorithm which works with complexity
O(

√
P (lambda)) group operations.

Q.4 Propose an appropriate way to select P and λ.

We need
√
P (λ) to be small. For instance,

√
P (λ) < 232. We need 2

λ
2 to be huge.

For instance, 2
λ
2 = 2128. So, λ = 256 and P (λ) = 264 could be good.

As a rule of thumb, we could suggest P (λ) = λ8.

3 Generator of QRn

We take n = pq with two different primes p and q which are such that p′ = p−1
2 and q′ = q−1

2
are two odd prime numbers. We let QRn be the group of quadratic residues modulo n, i.e. all
elements which can be written x2 mod n for x ∈ Z∗

n.

Q.1 Prove that QRn has order φ(n)/4.

Thanks to the Chinese Remainder Theorem, Z∗
n is isomorphic to Z∗

p × Z∗
q, which is

isomorphic to Zp−1 × Zq−1.
Zp−1 is isomorphic to Z2 × Zp′ because p′ is odd. Similarly, Zq−1 is isomorphic to
Z2 × Zq′. Hence, Z

∗
n is isomorphic to Z2 × Z2 × Zp′ × Zq′.

Using this isomorphism, the squares of Z∗
n is isomorphic to the doubles of Z2×Z2×

Zp′ × Zq′. Since 2 is invertible modulo p′ and q′, we have

2.(Z2 × Z2 × Zp′ × Zq′) = {(0, 0, a, b); (a, b) ∈ Zp′ × Zq′}

which has order p′q′ = φ(n)/4.

Q.2 Prove that QRn is cyclic. How many generators exist in QRn?

By the previous isomorphism, QRn and Zp′ × Zq′ are isomorphic. It is isomorphic
to Zp′q′ which is cyclic. So, QRn is cyclic.
The number of generators is the same as in Zp′q′ which is φ(p′q′).

Q.3 Propose an efficient algorithm to find a generator of QRn which does not need the factor-
ization of n but may fail with negligible probability (in terms of λ, the bitlength of p and
q, i.e. 2λ−1 < p < 2λ and 2λ−1 < q < 2λ).

We show that if we pick a random r ∈ Z∗
n and we set g = x2 mod n, then g is a

generator almost surely.
Indeed, each element of QRn has exactly 4 square roots in Z∗

n so the squaring oper-
ation is a balanced function onto QRn. Hence, g is uniform in QRn.
The probability it is not a generator is

1− φ(p′q′)

p′q′
=

1

p′
+

1

q′
− 1

p′q′

We have p′ > 2λ−2 and q′ > 2λ−2, so this is upper bounded by 23−λ, which is
negligible in terms of λ.

