Cryptography and Security - Midterm Exam Solution

Serge Vaudenay

18.11.2021

- duration: 1h45
- no documents allowed, except one 2-sided sheet of handwritten notes
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will not answer any technical question during the exam
- readability and style of writing will be part of the grade
- answers should not be written with a pencil

The exam grade follows a linear scale in which each question has the same weight.

1 Diffie-Hellman in an RSA subgroup

The crypto apprentice wants to run the Diffie-Hellman protocol, but instead of running it in a subgroup of \mathbf{Z}_{p}^{*} with a prime p, he decides to run it in a subgroup of \mathbf{Z}_{n}^{*} with an RSA modulus n. He wants n to remain hard to factor, "for more security". One goal of the exercise is to see if n indeed remains hard to factor.

We let $n=p q$. We let $g \in \mathbf{Z}_{n}^{*}$ and we denote by m its order in the group. We denote p^{\prime} resp. q^{\prime} the multiplicative order of g in \mathbf{Z}_{p}^{*} resp. \mathbf{Z}_{q}^{*}. We assume that n and g are known by everyone.
Q. 1 Prove that both p^{\prime} and q^{\prime} divide m.
p is a factor of n. We have $g^{m} \bmod n=1$ so $g^{m} \bmod p=1$ as well. Hence, m is a multiple of the order of g in \mathbf{Z}_{p}^{*}, which is p^{\prime}. Therefore, p^{\prime} divides m.
The same argument holds with q.
Q. 2 In this question, we assume that $q^{\prime}=1$ and $m>1$. Prove that anyone can factor n easily.

Since $q^{\prime}=1$, we have $g \bmod q=1$. Hence, q is a factor of $\operatorname{gcd}(g-1, n)$ which is a factor of n. If $\operatorname{gcd}(g-1, n)=n$, this implies that $g \bmod n=1$, which is not possible because $m>1$. Hence, $\operatorname{gcd}(g-1, n)=q$. We can compute the factor q of n by using the Euclid algorithm. We deduce $p=n / q$ which gives the full factorization of n.
Q. 3 We now assume that p^{\prime} and q^{\prime} are two different prime numbers. Prove that $m=p^{\prime} q^{\prime}$.

We first observe that $g^{p^{\prime} q^{\prime}} \bmod p=g^{p^{\prime} q^{\prime}} \bmod q=1$ so $g^{p^{\prime} q^{\prime}} \bmod n=1$ due to the Chinese Remainder Theorem. Thus, m divides $p^{\prime} q^{\prime}$.
We have $g^{m} \bmod n=1$ so $g^{m} \bmod p=1$ so p^{\prime} divides m. Similarly, q^{\prime} divides m. Hence, $\operatorname{Icm}\left(p^{\prime}, q^{\prime}\right)$ divides m. (Recall that for any triplet of integers a, b, c such that $a \mid c$ and $b \mid c$, we have $\operatorname{Icm}(a, b) \mid c$.) Since p^{\prime} and q^{\prime} are different primes, $\operatorname{Icm}\left(p^{\prime}, q^{\prime}\right)=p^{\prime} q^{\prime}$ which divides m.
Therefore, $m=p^{\prime} q^{\prime}$.
Q. 4 We still assume that p^{\prime} and q^{\prime} are different primes. We also assume that m is known and easy to factor. Fully specify a Diffie-Hellman protocol.
Pay special attention to protection against subgroup issues.
Since $m=p^{\prime} q^{\prime}$ (due to the previous question), m is known, and m is easy to factor, p^{\prime} and q^{\prime} are also known.
Alice picks $a \in \mathbf{Z}_{m}^{*}$ and sends $A=g^{a} \bmod n$ to Bob. Bob picks $b \in \mathbf{Z}_{m}^{*}$ and sends $B=g^{b} \bmod n$ to Alice. By picking a and b in \mathbf{Z}_{m}^{*}, this makes sure that A and B both have multiplicative order m, so they do not belong to a subgroup.
Alice verifies $1<B<n$, $B^{p^{\prime}} \bmod n \neq 1$, $B^{q^{\prime}} \bmod n \neq 1$, and $B^{m} \bmod n=1$. This ensures that B has multiplicative order m.
Similarly, Bob verifies $1<A<n$, $A^{p^{\prime}} \bmod n \neq 1$, $A^{q^{\prime}} \bmod n \neq 1$, and $A^{m} \bmod n=$ 1.

They both compute $C=B^{a} \bmod n=A^{b} \bmod n=g^{a b} \bmod n$. Finally, they apply a KDF on C to obtain the final output K.
Q. 5 What is the problem if m is not known by Alice or Bob?

They have a problem to select their ephemeral secret at random. Ideally, they should pick it in \mathbf{Z}_{m}^{*}.
Q. 6 If m is prime, prove that either $p^{\prime}=m$ and $q^{\prime}=1$, or $p^{\prime}=1$ and $q^{\prime}=m$, or $p^{\prime}=q^{\prime}=m$.

We have seen that both p^{\prime} and q^{\prime} divide m. Since m is prime, $p^{\prime}=1$ or $p^{\prime}=m$. Similarly, $q^{\prime}=1$ or $q^{\prime}=m$. If $p^{\prime}=q^{\prime}=1$, we have $g^{1} \bmod p=1$ and $g^{1} \bmod q=1$ so $g \bmod n=1$ thus $m=1$ which contradicts that m is prime. Hence, we can conclude.
Q. 7 Is it a good idea to select m prime?

We have seen it is not a good idea to have $p^{\prime}=1$ or $q^{\prime}=1$ (otherwise, we can factor n and there is no point in using an RSA group). What is left is the $p^{\prime}=q^{\prime}=m$ case.
With $p^{\prime}=q^{\prime}=m$, we can write $p=\alpha m+1, q=\beta m+1$, so $n=\alpha \beta m^{2}+(\alpha+\beta) m+1$.
This special form with m known may ease factorization.
For instance, when $\alpha+\beta<m$, we can recover

$$
\alpha+\beta=\frac{n-1}{m} \bmod m
$$

We can also recover

$$
\alpha \beta=\left\lfloor\frac{n-1}{m^{2}}\right\rfloor
$$

Then, α and β are the roots of the equation

$$
x^{2}-(\alpha+\beta) x+\alpha \beta=0
$$

from which we deduce p and q.
When $\alpha+\beta \geq m$, it is more complicated.

2 ElGamal over Exponentials

We consider the following public-key cryptosystem:

- Setup $\left(1^{\lambda}\right)$: generate a prime q of size λ and parameters for a cyclic group of order q. Select a generator g of this group. Set $\mathrm{pp}=($ parameters $, q, g)$. Given pp , we assume that group operations are done in polynomial time complexity in λ.
- Gen(pp): pick $x \in \mathbf{Z}_{q}$ uniformly and $y=g^{x}$ in the group. The secret key is x and the public key is y.
- Enc(pp,y, pt): pick $r \in \mathbf{Z}_{q}$ uniformly and output the ciphertext $(u, v)=\left(g^{r}, g^{\text {pt }} y^{r}\right)$.
- $\operatorname{Dec}(\mathrm{pp}, x, u, v)$: solve $g^{\mathrm{pt}}=v / u^{x}$ in pt.

We assume that the encryption domain is the set of small integers: $\mathrm{pt} \in\{0,1, \ldots, P(\lambda)-1\}$, where P denotes a polynomial which will be discussed.
Q. 1 Assuming that $2^{\lambda-1} \geq P(\lambda)$, prove that the cryptosystem is correct.

If we encrypt correctly with $u=g^{r}$ and $v=g^{\mathrm{pt}} y^{r}$, then $v / u^{x}=g^{\mathrm{pt}} y^{r} / g^{r x}=g^{\mathrm{pt}}$. So, pt is a solution to the equation to solve. The value of the solution is unique modulo q. Since $q>2^{\lambda-1} \geq P(\lambda)$, the solution in the encryption domain is unique. Hence, we have correctness.
Q. 2 Propose a (non-polynomial) algorithm to do a key recovery attack and give its complexity. Note: correct answers with the lowest complexity will get more points.

The generic baby-step giant-step algorithm computes x from y within a complexity of $\mathcal{O}(\sqrt{q})$ group operations. So, the complexity is $\mathcal{O}\left(2^{\frac{\lambda}{2}}\right)$ group operations.
Q. 3 Propose a polynomial-time algorithm to implement Dec.

We can use the baby-step giant-step algorithm which works with complexity $\mathcal{O}(\sqrt{P(\text { lambda })})$ group operations.
Q. 4 Propose an appropriate way to select P and λ.

We need $\sqrt{P(\lambda)}$ to be small. For instance, $\sqrt{P(\lambda)}<2^{32}$. We need $2^{\frac{\lambda}{2}}$ to be huge.
For instance, $2^{\frac{\lambda}{2}}=2^{128}$. So, $\lambda=256$ and $P(\lambda)=2^{64}$ could be good.
As a rule of thumb, we could suggest $P(\lambda)=\lambda^{8}$.

3 Generator of $\mathbf{Q R}_{n}$

We take $n=p q$ with two different primes p and q which are such that $p^{\prime}=\frac{p-1}{2}$ and $q^{\prime}=\frac{q-1}{2}$ are two odd prime numbers. We let QR_{n} be the group of quadratic residues modulo n, i.e. all elements which can be written $x^{2} \bmod n$ for $x \in \mathbf{Z}_{n}^{*}$.
Q. 1 Prove that QR_{n} has order $\varphi(n) / 4$.

Thanks to the Chinese Remainder Theorem, \mathbf{Z}_{n}^{*} is isomorphic to $\mathbf{Z}_{p}^{*} \times \mathbf{Z}_{q}^{*}$, which is isomorphic to $\mathbf{Z}_{p-1} \times \mathbf{Z}_{q-1}$.
\mathbf{Z}_{p-1} is isomorphic to $\mathbf{Z}_{2} \times \mathbf{Z}_{p^{\prime}}$ because p^{\prime} is odd. Similarly, \mathbf{Z}_{q-1} is isomorphic to $\mathbf{Z}_{2} \times \mathbf{Z}_{q^{\prime}}$. Hence, \mathbf{Z}_{n}^{*} is isomorphic to $\mathbf{Z}_{2} \times \mathbf{Z}_{2} \times \mathbf{Z}_{p^{\prime}} \times \mathbf{Z}_{q^{\prime}}$.
Using this isomorphism, the squares of \mathbf{Z}_{n}^{*} is isomorphic to the doubles of $\mathbf{Z}_{2} \times \mathbf{Z}_{2} \times$ $\mathbf{Z}_{p^{\prime}} \times \mathbf{Z}_{q^{\prime}}$. Since 2 is invertible modulo p^{\prime} and q^{\prime}, we have

$$
2 .\left(\mathbf{Z}_{2} \times \mathbf{Z}_{2} \times \mathbf{Z}_{p^{\prime}} \times \mathbf{Z}_{q^{\prime}}\right)=\left\{(0,0, a, b) ;(a, b) \in \mathbf{Z}_{p^{\prime}} \times \mathbf{Z}_{q^{\prime}}\right\}
$$

which has order $p^{\prime} q^{\prime}=\varphi(n) / 4$.
Q. 2 Prove that QR_{n} is cyclic. How many generators exist in QR_{n} ?

By the previous isomorphism, QR_{n} and $\mathbf{Z}_{p^{\prime}} \times \mathbf{Z}_{q^{\prime}}$ are isomorphic. It is isomorphic to $\mathbf{Z}_{p^{\prime} q^{\prime}}$ which is cyclic. So, QR_{n} is cyclic.
The number of generators is the same as in $\mathbf{Z}_{p^{\prime} q^{\prime}}$ which is $\varphi\left(p^{\prime} q^{\prime}\right)$.
Q. 3 Propose an efficient algorithm to find a generator of QR_{n} which does not need the factorization of n but may fail with negligible probability (in terms of λ, the bitlength of p and q, i.e. $2^{\lambda-1}<p<2^{\lambda}$ and $2^{\lambda-1}<q<2^{\lambda}$).

We show that if we pick a random $r \in \mathbf{Z}_{n}^{*}$ and we set $g=x^{2} \bmod n$, then g is a generator almost surely.
Indeed, each element of QR_{n} has exactly 4 square roots in \mathbf{Z}_{n}^{*} so the squaring operation is a balanced function onto QR_{n}. Hence, g is uniform in QR_{n}.
The probability it is not a generator is

$$
1-\frac{\varphi\left(p^{\prime} q^{\prime}\right)}{p^{\prime} q^{\prime}}=\frac{1}{p^{\prime}}+\frac{1}{q^{\prime}}-\frac{1}{p^{\prime} q^{\prime}}
$$

We have $p^{\prime}>2^{\lambda-2}$ and $q^{\prime}>2^{\lambda-2}$, so this is upper bounded by $2^{3-\lambda}$, which is negligible in terms of λ.

