Cryptography and Security — Midterm Exam

Solution

Serge Vaudenay

18.11.2021

— duration: 1h45

— no documents allowed, except one 2-sided sheet of handwritten notes

— a pocket calculator is allowed

— communication devices are not allowed

— the exam invigilators will not answer any technical question during the exam
— readability and style of writing will be part of the grade

— answers should not be written with a pencil

The exam grade follows a linear scale in which each question has the same weight.

1 Diffie-Hellman in an RSA subgroup

The crypto apprentice wants to run the Diffie-Hellman protocol, but instead of running it
in a subgroup of Z; with a prime p, he decides to run it in a subgroup of Z;, with an RSA
modulus n. He wants n to remain hard to factor, “for more security”. One goal of the exercise
is to see if n indeed remains hard to factor.

We let n = pq. We let g € Z and we denote by m its order in the group. We denote p’
resp. ¢’ the multiplicative order of g in Z,, resp. Z;. We assume that n and g are known by
everyone.

Q.1 Prove that both p’ and ¢’ divide m.

p is a factor of n. We have g¢"* modn =1 so ¢" mod p =1 as well. Hence, m is a

multiple of the order of g in Z,, which is p'. Therefore, p' divides m.

The same argument holds with q.

Q.2 In this question, we assume that ¢’ = 1 and m > 1. Prove that anyone can factor n easily.

Since ¢ = 1, we have g mod ¢ = 1. Hence, q is a factor of gcd(g — 1,n) which is a
factor of n. If gcd(g — 1,n) = n, this implies that g mod n = 1, which is not possible
because m > 1. Hence, gcd(g — 1,n) = q. We can compute the factor q of n by using
the Euclid algorithm. We deduce p = n/q which gives the full factorization of n.

Q.3 We now assume that p’ and ¢’ are two different prime numbers. Prove that m = p/q’.

We first observe that gp/q, mod p = gp,q, modqg =1 so gp/q' mod n = 1 due to the
Chinese Remainder Theorem. Thus, m divides p'q .

We have g™ modn =1 so g™ mod p = 1 so p’ divides m. Similarly, ¢’ divides m.
Hence, lem(p/, q') divides m. (Recall that for any triplet of integers a, b, ¢ such that
alc and ble, we have lcm(a,b)|c.) Since p’ and ¢ are different primes, lem(p',¢') = p'q’
which divides m.

Therefore, m = p'q’.




Q.4 We still assume that p’ and ¢’ are different primes. We also assume that m is known and
easy to factor. Fully specify a Diffie-Hellman protocol.
Pay special attention to protection against subgroup issues.

Since m = p'q’ (due to the previous question), m is known, and m is easy to factor,
p' and ¢’ are also known.

Alice picks a € Z;, and sends A = g® mod n to Bob. Bob picks b € Z}, and sends
B = ¢® mod n to Alice. By picking a and b in Z:., this makes sure that A and B
both have multiplicative order m, so they do not belong to a subgroup.

Alice verifies 1 < B < n, B modn # 1, BY mod n # 1, and B™ mod n = 1. This
ensures that B has multiplicative order m.

Similarly, Bob verifies1 < A < n, A” mod n #1, A7 mod n #1, and A™ mod n =
1.
They both compute C = B® mod n = A’ mod n = ¢? mod n. Finally, they apply a
KDF on C to obtain the final output K.

Q.5 What is the problem if m is not known by Alice or Bob?

They have a problem to select their ephemeral secret at random. Ideally, they should
pick it in Zy,.

Q.6 If m is prime, prove that either p’ =mand ¢ =1, orp' =1and ¢ =m, or p’ = ¢ = m.

We have seen that both p' and ¢ divide m. Since m is prime, p' = 1 or p’ = m.
Similarly, ¢ =1 or ¢ =m. If p = ¢ =1, we have g' mod p =1 and g' mod ¢ =1
so gmodn = 1 thus m = 1 which contradicts that m is prime. Hence, we can
conclude.

Q.7 Is it a good idea to select m prime?

We have seen it is not a good idea to have p' =1 or ¢’ =1 (otherwise, we can factor
n and there is no point in using an RSA group). What is left is the p’ = ¢ = m
case.

With p' = ¢’ = m, we can write p = am+1, ¢ = fm+1, son = afm?+(a+B)m+1.
This special form with m known may ease factorization.

For instance, when o + 8 < m, we can recover

—1
a—i—ﬁ:%modm

We can also recover

Then, o and 8 are the roots of the equation
2 —(a+B)r+aB =0

from which we deduce p and q.
When o+ 8 > m, it is more complicated.




2 ElGamal over Exponentials

We consider the following public-key cryptosystem:

— Setup(1*): generate a prime ¢ of size A and parameters for a cyclic group of order g. Select
a generator g of this group. Set pp = (parameters, ¢, g). Given pp, we assume that group
operations are done in polynomial time complexity in A.

— Gen(pp): pick z € Z; uniformly and y = ¢* in the group. The secret key is = and the
public key is y.

— Enc(pp, y, pt): pick r € Z, uniformly and output the ciphertext (u,v) = (¢", g*'y").

— Dec(pp, z,u,v): solve gP* = v/u® in pt.

We assume that the encryption domain is the set of small integers: pt € {0,1,..., P(\) — 1},
where P denotes a polynomial which will be discussed.

Q.1 Assuming that 22! > P()), prove that the cryptosystem is correct.

If we encrypt correctly with w = g" and v = gP*y", then v/u* = gP'y" /g™ = gP*. So,
pt is a solution to the equation to solve. The value of the solution is unique modulo
q. Since g > 22 =1 > P()), the solution in the encryption domain is unique. Hence,
we have correctness.

Q.2 Propose a (non-polynomial) algorithm to do a key recovery attack and give its complexity.
Note: correct answers with the lowest complexity will get more points.

The generic baby-step giant-step algorithm computes x from y within a complexity
A
of O(\/q) group operations. So, the complexity is O(22) group operations.

Q.3 Propose a polynomial-time algorithm to implement Dec.

We can use the baby-step giant-step algorithm which works with complexity
O(\/P(lambda)) group operations.

Q.4 Propose an appropriate way to select P and .

We need /P()\) to be small. For instance, \/P()\) < 232. We need 22 to be huge.
For instance, 2% = 2128, So, A =256 and P(\) = 25* could be good.
As a rule of thumb, we could suggest P(\) = A8,




3 Generator of QR,,

We take n = pq with two different primes p and g which are such that p’ = % and ¢’ = 5=

q—1

are two odd prime numbers. We let QR,, be the group of quadratic residues modulo n, i.e. all

elements which can be written 2 mod n for r € Z;..

Q.1 Prove that QR,, has order ¢(n)/4.

Thanks to the Chinese Remainder Theorem, Zj, is isomorphic to Zy X Z,
isomorphic to Zy_1 X Zgy_1.

Zy x Ly . Hence, Zy, is isomorphic to Zo X Lo X Ly X Ly .
Z, x Zy. Since 2 is invertible modulo p’ and ¢', we have
2.(Zy x 2y x Ly x Zy) ={(0,0,a,b);(a,b) € Zy x Zy}

which has order p'q’ = p(n)/4.

Z,_1 is isomorphic to Zy X Zy because p' is odd. Similarly, Zy—1 is isomorphic to

Using this isomorphism, the squares of Z7, is isomorphic to the doubles of Zg X Zg X

which is

Q.2 Prove that QR,, is cyclic. How many generators exist in QR,,?

to Zy g which is cyclic. So, QR,, is cyclic.
The number of generators is the same as in Z,y which is p(p'q’).

By the previous isomorphism, QR,, and Z,y x Zy are isomorphic. It is isomorphic

Q.3 Propose an efficient algorithm to find a generator of QR,, which does not need the factor-
ization of n but may fail with negligible probability (in terms of A, the bitlength of p and

g, ie. 221 < p <2t and 22 < g < 2M).

generator almost surely.

ation is a balanced function onto QR,,. Hence, g is uniform in QR,,.
The probability it is not a generator is
ep¢) 1 1 1

1— - — 4= -
r'q Y q v

We have p' > 272 and ¢ > 2)72, so this is upper bounded by 23,
negligible in terms of .

We show that if we pick a random r € Z¥ and we set g = z*> mod n, then g is a

Indeed, each element of QR,, has exactly 4 square roots in Z; so the squaring oper-

which 1s




