Cryptography and Security — Midterm Exam

Serge Vaudenay

10.11.2022

- duration: 1h45
- no documents allowed, except one 2-sided sheet of handwritten notes
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will <u>**not**</u> answer any technical question during the exam
- readability and style of writing will be part of the grade
- answers should not be written with a pencil

1 Expected Ciphertext Length for Perfect Secrecy

Let \mathcal{M} be a plaintext domain of size $\#\mathcal{M} \geq 2^n$. We define a random plaintext $X \in \mathcal{M}$ of distribution \mathcal{D}_X and a random key $K \in \mathcal{K}$ of distribution \mathcal{D}_K . We assume that the support of \mathcal{D}_X is \mathcal{M} . Let $\mathsf{Enc}/\mathsf{Dec}$ be a cipher offering *perfect secrecy* for the distributions \mathcal{D}_X and \mathcal{D}_K . We assume that the ciphertext $Y = \mathsf{Enc}_K(X)$ is a bitstring of finite length. That is, $X \in \mathcal{M}$, $K \in \mathcal{K}$, and $Y \in \{0,1\}^*$. We denote by |Y| the length of the bitstring Y. The objective of this exercise is to lower bound the expected length of a ciphertext $E(|\mathsf{Enc}_K(x)|)$ for any fixed $x \in \mathcal{M}$ and a random $K \in \mathcal{K}$.

- **Q.1** In the following subquestions, we consider X uniformly distributed in \mathcal{M} and $k \in \mathcal{K}$ fixed. We define $Y = \mathsf{Enc}_k(X)$.
 - **Q.1a** For any *i*, prove that $\Pr[|Y| \le i] \le 2^{i+1-n}$. HINT: start by proving $\Pr[|Y| = i] \le 2^{i-n}$.
 - Q.1b Prove that

$$E(|Y|) = (n-1)\Pr[|Y| \le n-1] + \sum_{i=n}^{+\infty} i\Pr[|Y| = i] - \sum_{i=0}^{n-2}\Pr[|Y| \le i]$$

Q.1c Prove that $E(|Y|) \ge n-2$.

- **Q.2** In the following subquestions, we consider X uniformly distributed in \mathcal{M} and we assume that $K \in \mathcal{K}$ follows the distribution \mathcal{D}_K . We define $Y = \text{Enc}_K(X)$.
 - **Q.2a** Prove that $E(|Y|) \ge n-2$.
 - **Q.2b** Prove that the cipher provides perfect secrecy for X uniform in \mathcal{M} . Hint: invoke a theorem from the course.
 - **Q.2c** Prove that for any $x \in \mathcal{M}$, $E(|\mathsf{Enc}_K(x)|) \ge n-2$.

2 DDH Modulo pq

We consider a probabilistic polynomial-time algorithm $\mathsf{Setup}(1^{\lambda}) \to (\mathsf{pp}, n, g)$ which takes a security parameter λ and generates a cyclic group of order n and generator g, together with the public parameters pp which are used to define the group operations. We recall the DDH problem based on Setup:

 $DDH(\lambda, b)$ 1: Setup(1^{\lambda}) \rightarrow (pp, n, g) 2: pick x, y, z \in Z_n uniformly 3: if b = 1 then z \leftarrow xy 4: X \leftarrow g^x, Y \leftarrow g^y, Z \leftarrow g^z 5: \mathcal{A}(pp, n, g, X, Y, Z) \rightarrow t 6: return t

The advantage of the adversary \mathcal{A} playing this game is

$$\mathsf{Adv}_{\mathcal{A}}(\lambda) = \Pr[\mathsf{DDH}(\lambda, 1) \to 1] - \Pr[\mathsf{DDH}(\lambda, 0) \to 1]$$

We have seen in class that the DDH problem is easy if n has any small factor (larger than 1). In this exercise, we wonder what happens if n = pq with p and q large primes. In a "Diffie-Hellman spirit", the group is public and we assume that p and q are public too (hence, provided in pp).

- **Q.1** In this question, we assume that *n* has a small prime factor *p* (to give an idea: a number of $10 \log_2 \lambda$ bits). In the following subquestions, we construct a probabilistic polynomial-time adversary \mathcal{A} with advantage larger than $\frac{1}{2}$.
 - **Q.1a** Given a polynomial-time algorithm which takes n as input and find a prime factor p of $10 \log_2 \lambda$ bits, assuming that n has $c \cdot \lambda^{\alpha}$ bits, for some constants c and α . Precisely estimate its complexity in terms of λ .
 - **Q.1b** Given $w = \frac{n}{p}$, show that it is easy to check if Z^w is the solution to the computational Diffie-Hellman problem with instance (X^w, Y^w) in the subgroup generated by g^w . Assume that T is the complexity of a group multiplication. Precisely estimate its complexity in terms of λ and T.
 - **Q.1c** By using the previous questions, construct a polynomial-time adversary \mathcal{A} , give its complexity in terms of λ and T and show that it has an advantage in the DDH game close to 1.
- **Q.2** Let m, p, and q be primes such that $p \neq q$ and pq divides m-1. Let $h \in \mathbf{Z}_m^*$ be random and uniformly distributed. Prove that $h^{\frac{m-1}{p}} \mod m = 1$ and $h^{\frac{m-1}{q}} \mod m = 1$ are two independent events of probability $\frac{1}{p}$ and $\frac{1}{q}$ respectively.
- **Q.3** Given a constant c, we let $f(\lambda) = c \cdot \lambda^3$ be the required bitlength of a modulus m. Construct Setup^{*} $(1^{\lambda}) \rightarrow ((m, p, q), n, g)$ with pp = (m, p, q): a probabilitatic polynomial-time algorithm which generates three prime numbers m, p, q such that m is of $f(\lambda)$ bits, p and q are different and of 2λ bits, a number n such that n = pq and n divides m 1, and also $g \in \mathbf{Z}_m^*$ which is of order n. Analyze its complexity heuristically.
- **Q.4** Let Setup_1^* be defined by

```
\mathsf{Setup}_1^*(1^\lambda)
```

- 1: Setup* $(1^{\lambda}) \rightarrow ((m, p, q), n, g)$
- 2: $g_1 \leftarrow g^q \mod m$
- 3: return (m, p, g_1)

We define Setup_2^* similarly. Prove that if DDH is hard for Setup^* , then DDH is hard for Setup_1^* and for Setup_2^* .