Cryptography and Security - Midterm Exam

Serge Vaudenay

10.11.2022

- duration: 1h45
- no documents allowed, except one 2-sided sheet of handwritten notes
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will not answer any technical question during the exam
- readability and style of writing will be part of the grade
- answers should not be written with a pencil

1 Expected Ciphertext Length for Perfect Secrecy

Let \mathcal{M} be a plaintext domain of size $\# \mathcal{M} \geq 2^{n}$. We define a random plaintext $X \in \mathcal{M}$ of distribution \mathcal{D}_{X} and a random key $K \in \mathcal{K}$ of distribution \mathcal{D}_{K}. We assume that the support of \mathcal{D}_{X} is \mathcal{M}. Let Enc/Dec be a cipher offering perfect secrecy for the distributions \mathcal{D}_{X} and \mathcal{D}_{K}. We assume that the ciphertext $Y=\operatorname{Enc}_{K}(X)$ is a bitstring of finite length. That is, $X \in \mathcal{M}$, $K \in \mathcal{K}$, and $Y \in\{0,1\}^{*}$. We denote by $|Y|$ the length of the bitstring Y. The objective of this exercise is to lower bound the expected length of a ciphertext $E\left(\left|\operatorname{Enc}_{K}(x)\right|\right)$ for any fixed $x \in \mathcal{M}$ and a random $K \in \mathcal{K}$.
Q. 1 In the following subquestions, we consider X uniformly distributed in \mathcal{M} and $k \in \mathcal{K}$ fixed. We define $Y=\operatorname{Enc}_{k}(X)$.
Q.1a For any i, prove that $\operatorname{Pr}[|Y| \leq i] \leq 2^{i+1-n}$.

HINT: start by proving $\operatorname{Pr}[|Y|=i] \leq 2^{i-n}$.
Q.1b Prove that

$$
E(|Y|)=(n-1) \operatorname{Pr}[|Y| \leq n-1]+\sum_{i=n}^{+\infty} i \operatorname{Pr}[|Y|=i]-\sum_{i=0}^{n-2} \operatorname{Pr}[|Y| \leq i]
$$

Q.1c Prove that $E(|Y|) \geq n-2$.
Q. 2 In the following subquestions, we consider X uniformly distributed in \mathcal{M} and we assume that $K \in \mathcal{K}$ follows the distribution \mathcal{D}_{K}. We define $Y=\operatorname{Enc}_{K}(X)$.
Q.2a Prove that $E(|Y|) \geq n-2$.
Q.2b Prove that the cipher provides perfect secrecy for X uniform in \mathcal{M}.

Hint: invoke a theorem from the course.
Q.2c Prove that for any $x \in \mathcal{M}, E\left(\left|\operatorname{Enc}_{K}(x)\right|\right) \geq n-2$.

2 DDH Modulo $\boldsymbol{p q}$

We consider a probabilistic polynomial-time algorithm $\operatorname{Setup}\left(1^{\lambda}\right) \rightarrow(\mathrm{pp}, n, g)$ which takes a security parameter λ and generates a cyclic group of order n and generator g, together with the public parameters pp which are used to define the group operations. We recall the DDH problem based on Setup:

```
\(\operatorname{DDH}(\lambda, b)\)
    \(\operatorname{Setup}\left(1^{\lambda}\right) \rightarrow(\mathrm{pp}, n, g)\)
    pick \(x, y, z \in \mathbf{Z}_{n}\) uniformly
    if \(b=1\) then \(z \leftarrow x y\)
    \(X \leftarrow g^{x}, Y \leftarrow g^{y}, Z \leftarrow g^{z}\)
    \(\mathcal{A}(\mathrm{pp}, n, g, X, Y, Z) \rightarrow t\)
    return \(t\)
```

The advantage of the adversary \mathcal{A} playing this game is

$$
\operatorname{Adv}_{\mathcal{A}}(\lambda)=\operatorname{Pr}[\operatorname{DDH}(\lambda, 1) \rightarrow 1]-\operatorname{Pr}[\operatorname{DDH}(\lambda, 0) \rightarrow 1]
$$

We have seen in class that the DDH problem is easy if n has any small factor (larger than 1). In this exercise, we wonder what happens if $n=p q$ with p and q large primes. In a "Diffie-Hellman spirit", the group is public and we assume that p and q are public too (hence, provided in pp).
Q. 1 In this question, we assume that n has a small prime factor p (to give an idea: a number of $10 \log _{2} \lambda$ bits). In the following subquestions, we construct a probabilistic polynomial-time adversary \mathcal{A} with advantage larger than $\frac{1}{2}$.
Q.1a Given a polynomial-time algorithm which takes n as input and find a prime factor p of $10 \log _{2} \lambda$ bits, assuming that n has $c . \lambda^{\alpha}$ bits, for some constants c and α. Precisely estimate its complexity in terms of λ.
Q.1b Given $w=\frac{n}{p}$, show that it is easy to check if Z^{w} is the solution to the computational Diffie-Hellman problem with instance $\left(X^{w}, Y^{w}\right)$ in the subgroup generated by g^{w}. Assume that T is the complexity of a group multiplication. Precisely estimate its complexity in terms of λ and T.
Q.1c By using the previous questions, construct a polynomial-time adversary \mathcal{A}, give its complexity in terms of λ and T and show that it has an advantage in the DDH game close to 1 .
Q. 2 Let m, p, and q be primes such that $p \neq q$ and $p q$ divides $m-1$. Let $h \in \mathbf{Z}_{m}^{*}$ be random and uniformly distributed. Prove that $h^{\frac{m-1}{p}} \bmod m=1$ and $h^{\frac{m-1}{q}} \bmod m=1$ are two independent events of probability $\frac{1}{p}$ and $\frac{1}{q}$ respectively.
Q. 3 Given a constant c, we let $f(\lambda)=c . \lambda^{3}$ be the required bitlength of a modulus m. Construct $\operatorname{Setup}^{*}\left(1^{\lambda}\right) \rightarrow((m, p, q), n, g)$ with $\mathrm{pp}=(m, p, q)$: a probabilitstic polynomial-time algorithm which generates three prime numbers m, p, q such that m is of $f(\lambda)$ bits, p and q are different and of 2λ bits, a number n such that $n=p q$ and n divides $m-1$, and also $g \in \mathbf{Z}_{m}^{*}$ which is of order n. Analyze its complexity heuristically.
Q. 4 Let Setup ${ }_{1}^{*}$ be defined by

Setup ${ }_{1}^{*}\left(1^{\lambda}\right)$
1: $\operatorname{Setup}^{*}\left(1^{\lambda}\right) \rightarrow((m, p, q), n, g)$
2: $g_{1} \leftarrow g^{q} \bmod m$
3: return $\left(m, p, g_{1}\right)$
We define Setup ${ }_{2}^{*}$ similarly. Prove that if DDH is hard for Setup*, then DDH is hard for Setup ${ }_{1}^{*}$ and for Setup ${ }_{2}^{*}$.

