Security Protocols and Application - Final Exam

Philippe Oechslin and Serge Vaudenay

28.7.2019

> Family Name: .
> Given Name: .
> SCIPER:

- duration: 3h00
- no document allowed
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will not answer any technical question during the exam
- the answers to each exercise must be provided on separate sheets
- readability and style of writing will be part of the grade
- do not forget to put your name on every sheet!

1 Finding Malicious Domain Parameters

Let $n=2^{e} d+1$ where e and d are positive integers and d is odd. Let a be an integer such that $1 \leq a<n$. We say that n is a pseudoprime to base a if and only if

$$
a^{d} \bmod n=1 \quad \text { or } \quad \exists i \in\{0,1, \ldots, e-1\} \quad\left(a^{2^{i} d}+1\right) \bmod n=0
$$

We also define

$$
S(n)=\{a \in\{1,2, \ldots, n-1\} ; n \text { is a pseudoprime to base } a\}
$$

It was proven that $\# S(n) \leq \frac{\varphi(n)}{2^{m-1}}$, where m is the number of pairwise different prime factors of n.
Q. 1 Explain the acronyms CDH, TLS, PAKE, ECDH.
Q. 2 Explain what is a safe prime, a smooth number, and by which efficient algorithm we can compute discrete logarithms in a smooth ordered cyclic group.
Q. 3 Explain what are Diffie-Hellman parameters and which mathematical properties we should normally verify on those parameters.
\square
Q. 4 Compute $S(33)$.
Q. 5 Depending on $\# S(n)$ and the number t of iterations, what is the probability of the Miller-Rabin primality test to be wrong when n is a composite number?
Q. 6 Explain the following quote:
"The primality test that OpenSSL uses [...] performs t rounds of random-base MillerRabin testing, where t is determined by the bit-size of p and q. Since p and q are 1024 and 1023 bits respectively, $t=3$ rounds of Miller-Rabin are performed, at least in versions prior to OpenSSL 1.1.0i (released 14th August 2018). From version 1.1.0i onwards, t was increased to 5 , with the aim of achieving 128 bits of security instead of 80 bits."
How was t computed?
Q. 7 The quote of the previous question continues as follows:
"For the DH parameter set [there is] a probability of approximately $1 / 2^{8}$ of being declared prime by a single round of Miller-Rabin testing. Hence this DH parameter set will be accepted by DH_check as being valid with probability approximately 2^{-24} (and the lower probability of 2^{-40} since version 1.1 .0 i of OpenSSL)."
Why is this not a contradiction with the previous quote?
Q. 8 Is this attack a threat to the Diffie-Hellman protocol? If not, when could it be a threat?

```
Family Name:
Given Name:
SCIPER:
```


2 NSEC5 and Zone Enumeration

2.1 NSEC and NSEC3

Q. 1 NSEC and NSEC3 have a weakness that NSEC5 aims to eliminate. Answer the following 3 questions:

- What is this weakness?
- What advantage does NSEC3 give regarding this weakness?
- Why is this not sufficient?

2.2 NSEC5 properties

In NSEC5, PSR stands for Primary-Secondary-Resolver systems. Explain the following properties for a PSR system:

Q. 2 Completeness:

\square
Q. 3 Soundness:

Q. 4 Privacy in NSEC5 is defined using f-zero knowledge proofs (f-zk proofs). Explain what the f means and what it is in NSEC5
\square

2.3 NSEC5 signatures

NSEC5 uses two key pairs, the primary and secondary keys. They are used for two different types of signatures. Let's call them primary signatures and secondary signatures.
Q. 5 How many primary and how many secondary signatures must the primary resolver generate when setting up a zone with N host names ?
\square
Q. 6 How many primary and how many secondary signatures must the secondary server generate when answering a request ?
\square
Q. 7 How many primary and how many secondary signature verifications must the resolver carry out to verify the answer?

2.4 NSEC5 attacks

Q. 8 Looking at the answers of the last two questions, describe a method for creating a denial of service on the secondary server. What is the cost for the attacker?
\square
Q. 9 Describe a method that allows an attacker to know the number of names that exist in a domain
\square
Q. 10 If a secondary server is compromised by an attacker, can the attacker
a) know all existing names of the domain ?
b) fake a positive response for a name that is not in the domain?
c) fake a negative response for a name that is in the domain?

Justify
Q. 11 What attack could an attacker carry out if he was in possession of the private key of a secondary server?
\square
Q. 12 There is a very small probability that a fully functioning secondary server can not generate a proof of non-existence of a name. In what situation does this happen?

