Advanced Cryptography — Final Exam

Serge Vaudenay

20.6.2011

– duration: 3h00
– any document allowed
– a pocket calculator is allowed
– communication devices are not allowed
– readability and style of writing will be part of the grade
– it is unlikely we will answer any technical question during the exam
– do not forget to put your full name on your copy!
I \ \Sigma\text{-Protocol for } \mathcal{P}

We consider an alphabet \(Z\), a polynomial \(P\), and a predicate \(R\). We assume that \(R\) can be computed in polynomial time. Given \(x \in Z^*\), we let
\[
R_x = \{w \in Z^* : R(x, w) \text{ and } |w| \leq P(|x|)\}
\]
where \(|x|\) denotes the length of \(x\). We define the language \(L\) from \(R\) by
\[
L = \{x \in Z^* : R_x \neq \emptyset\}
\]

Q. In this question, we assume that there is an algorithm \(A\) such that for any \(x \in L\), we obtain \(A(x) \in R_x\) and that for any \(x \in Z^*\), the running time of \(A(x)\) is bounded by \(P(|x|)\).
Construct a \(\Sigma\text{-protocol for } L\). Carefully specify all protocol elements and prove all properties which must be satisfied.

II \ \text{OR Proof}

Let \(Z = \{0, 1\}\) be an alphabet. We consider two \(\Sigma\text{-protocols } \Sigma_1 \text{ and } \Sigma_2 \) for two languages \(L_1\) and \(L_2\) over the alphabet \(Z\) defined by two predicates \(R_1\) and \(R_2\). We assume that \(\Sigma_1\) and \(\Sigma_2\) use the same challenge set \(E\) which is given a group structure with a law \(+\). For \(i, j \in \{1, 2\}\), we denote \(\mathcal{P}_i\) the prover algorithm, \(V_i\) the verification predicate, \(E_i\) the extractor, and \(S_i\) the simulator.

Q.1 (AND proof) Construct a \(\Sigma\text{-protocol } \Sigma = \Sigma_1 \text{ AND } \Sigma_2\) for the language defined by
\[
R((x_1, x_2), (w_1, w_2)) \iff R_1(x_1, w_1) \text{ AND } R_2(x_2, w_2)
\]
(OR proof) In the remaining of the exercise, we now let
\[
R((x_1, x_2), w) \iff R_1(x_1, w) \text{ OR } R_2(x_2, w)
\]
This predicate defines a new language \(L\). We construct a new \(\Sigma\text{-protocol } \Sigma = \Sigma_1 \text{ OR } \Sigma_2\) for \(L\) by

- \(\mathcal{P}((x_1, x_2), w; r_1, r_2)\) finds out \(i\) such that \(R_i(x_i, w)\) holds, sets \(j = 3 - i\), then picks a random \(e_j \in E\) and runs \(S_j(x_j, e_j; r_1) = (a_j, e_j, z_j)\). Then, it runs \(\mathcal{P}_i(x_i, w; r_2) = a_i\) and yield \((a_1, a_2)\).
- Upon receiving \(e\), \(\mathcal{P}((x_1, x_2), w; e; r_1, r_2)\) sets \(e_i = e - e_j\), runs \(\mathcal{P}(x_i, w; e; r_2) = z_j\) and yields \((e_1, e_2, z_1, z_2)\).

The verification predicate is
\[
V((x_1, x_2), (a_1, a_2), e, (e_1, e_2, z_1, z_2)) \iff \begin{cases} e = e_1 + e_2 \text{ AND } V_1(x_1, a_1, e_1, z_1) \text{ AND } V_2(x_2, a_2, e_2, z_2) \end{cases}
\]

Q.2 Show that \(\Sigma\) is complete and works in polynomial time.
Q.3 Construct an extractor \(E\) for \(\Sigma\) and show that is works, in polynomial time.
Q.4 Construct a simulator \(S\) for \(\Sigma\) and show that is works, in polynomial time.
III Smashing SQUASH-0

We consider an access control protocol called SQUASH-0 in which a client and a server hold a secret key K. In the protocol, the server sends a challenge C. The client must respond with

$$S = (\text{stoi}(C \oplus K))^2 \mod N$$

for a given modulus N, where stoi is a function transforming a bitstring into an integer by

$$\text{stoi}(\epsilon) = 0$$

for the zero-length bitstring ϵ, and

$$\text{stoi}(b||s) = b + 2 \times \text{stoi}(s)$$

for any bit $b \in \{0, 1\}$ and any bitstring s. By convention, the least significant bit has position 0. We further assume that N is larger than K and C.

Q.1 Let c_i be -1 raised to the power of the bit position i in C. Let k_i be -1 raised to the power of the bit position i in K.

Show that

$$S = \left(\frac{1}{4} \sum_{i,j} 2^{i+j} c_i c_j k_i k_j - \frac{2^\ell - 1}{2} \sum_i 2^i c_i k_i + \frac{(2^\ell - 1)^2}{4} \right) \mod N$$

where ℓ is the bitlength of N.

In what follows, we assume that $N = 2^\ell - 1$. Deduce

$$S = \left(\frac{1}{4} \sum_{i,j} 2^{i+j} c_i c_j k_i k_j \right) \mod N$$

Q.2 Deduce that by using about ℓ^2 challenges and their responses, an adversary could recover K by solving a linear system of $O(\ell^2)$ equations with $\frac{(\ell - 1)}{2}$ unknowns.

As an example, consider $\ell = 1024$. What is the complexity of the attack?

Hint: define $k_{i,j} = k_i k_j$.

Q.3 Given a function φ mapping a bitstring of length d to a real number, we define

$$\hat{\varphi}(V) = \sum_x (-1)^x V \varphi(x)$$

where \cdot denotes the dot product between two bitstrings and the sum goes on all bitstrings x of length d. For the function $\varphi(x) = (-1)^x U$, show that $\hat{\varphi}(V) = 2^d$ if $V = U$ and $\hat{\varphi}(V) = 0$ otherwise. We write it $\hat{\varphi}(V) = 2^d 1_{V=U}$.

Q.4 In a chosen challenge attack, an adversary creates d challenges C^1, \ldots, C^d and all linear combinations of these challenges. Namely, $C(x_1 \ldots x_d) = x_1 C^1 \oplus \cdots \oplus x_d C^d$. Given a d-bit vector x, we thus define $C(x)$. We write x as an argument of S and c_i as well so that $S(x)$ is the response to challenge $C(x)$ and $c_i(x)$ is -1 raised to the power of the bit position i in $C(x)$. Let U_i be the d-bit vector consisting of the bit at position i of C^1, \ldots, C^d.

Deduce that

$$\hat{S}(V) = \frac{1}{4} \sum_{i,j} 2^{d+i+j} k_i k_j 1_{V=U_i \oplus U_j}$$

Hint: observe $c_i(x) = (-1)^x U_i$ and use Q.1 then Q.3.
Q.5 With the same notations, we assume that the function mapping a non-ordered pair \(\{i, j\} \) with \(i \neq j \) to \(U_i \oplus U_j \) behaves like a random function. We further assume that \(d \) is pretty small. For each \(V \), estimate the number of non-ordered pairs \(\{i, j\} \) with \(i \neq j \) such that \(V = U_i \oplus U_j \). Deduce that we get \(2^d \) equations modulo \(N \) with \(\ell(\ell - 1)2^{-d-1} \) unknowns \(k_{i, j} \) on average taking values in \(\{-1, +1\} \).

Q.6 We take \(d = 2\log_2 \ell \) and solve each equation by exhaustive search. Deduce a chosen-challenge attack to break the algorithm. How many chosen challenges does it use, asymptotically? What is its complexity?

IV PIF Implies PAF

We consider a function family \(F_k \) taking inputs of length \(\lambda \), making outputs of length \(\lambda \), and where the key \(k \) is also of length \(\lambda \). We consider the two following games:

Game PIF(\(A, 1^\lambda\)):
1: pick some random coins \(k \) of length \(\lambda \)
2: pick \(\rho \)
3: run \(A(\rho) \rightarrow x \)
4: if \(|x| \neq \lambda \), output 0 and stop
5: pick a random bit \(b \)
6: if \(b = 0 \) then
7: compute \(y = F_k(x) \)
8: else
9: pick a random \(y \) of \(\lambda \) bits
10: end if
11: run \(A(y; \rho) \rightarrow b' \)
12: output \(b \oplus b' \oplus 1 \)

Game PAF(\(A, 1^\lambda\)):
1: pick some random coins \(k \) of length \(\lambda \)
2: pick \(\rho \)
3: pick a random \(x \) of length \(\lambda \)
4: compute \(y = F_k(x) \)
5: run \(A(y; \rho) \rightarrow x' \)
6: output \(1_{x=x'} \)

We say that \(F_k \) is PIF-secure (resp. PAF-secure) if for all polynomially bounded \(A \), we have that \(\Pr[\text{PIF}(A, 1^\lambda) = 1] - \frac{1}{2} \) (resp. \(\Pr[\text{PAF}(A, 1^\lambda) = 1] \)) is a negligible function in terms of \(\lambda \).

Q. Show that if \(F_k \) is PIF-secure, then it is PAF-secure.

Hint: based on a PAF-adversary \(A \) and some coins \(r' \| \rho \| b'' \), define \(A'(\rho') = x \) picked at random from \(r' \) then \(A'(y, \rho') = 1 \) if \(A(y; \rho) = x \) and \(A'(y, \rho') = b'' \) otherwise. By considering \(A' \) as a PIF-adversary, look at the link between \(\Pr[\text{PIF}(A', 1^\lambda) = 1] - \frac{1}{2} \) and \(\Pr[\text{PAF}(A, 1^\lambda) = 1] \).