I \(\Sigma \)-Protocol for \(\mathcal{P} \)

We consider an alphabet \(Z \), a polynomial \(P \), and a predicate \(R \). We assume that \(R \) can be computed in polynomial time. Given \(x \in Z^* \), we let

\[
R_x = \{ w \in Z^*: R(x, w) \text{ and } |w| \leq P(|x|) \}
\]

where \(|x| \) denotes the length of \(x \). We define the language \(L \) from \(R \) by

\[
L = \{ x \in Z^*: R_x \neq \emptyset \}
\]

Q. In this question, we assume that there is an algorithm \(\mathcal{A} \) such that for any \(x \in L \), we obtain \(\mathcal{A}(x) \in R_x \) and that for any \(x \in Z^* \), the running time of \(\mathcal{A}(x) \) is bounded by \(P(|x|) \).

Construct a \(\Sigma \)-protocol for \(L \). Carefully specify all protocol elements and prove all properties which must be satisfied.

Let \(\varepsilon \) be a word of length 0.

- We define \(\mathcal{P}(x,w) = \varepsilon \) and \(\mathcal{P}(x,w,e) = \varepsilon \).
- We take the set of challenges \(E = \{ \varepsilon \} \). We could actually take any set of challenges with polynomially bounded length.
- The verification algorithm \(V(x,a,e,z) \) first computes \(w = \mathcal{A}(x) \), then checks if \(R(x,w) \) holds.
- Clearly, this protocol satisfies completeness (\(x \in L \) is accepted by the verifier when the protocol is honestly run).
- Clearly, the algorithms run in polynomial time in terms of \(|x| \).
- To define a polynomial time extractor based on some values \(x,a,e,e',z,z' \) such that \(V(x,a,e,z) \) and \(V(x,a,e',z') \) hold, and \(e \neq e' \), we simply compute \(w = \mathcal{A}(x) \). Clearly, we obtain a polynomial-time extractor.
- To define a simulator \(S(x,e) \), we just take \((a,z) = (e,e) \). Clearly,

\[
\Pr[S(x,e) = (a,z)] = \Pr[\mathcal{P}(x,w) = a, \mathcal{P}(x,w,e) = z]
\]

So, we obtain a polynomial-time simulator.

So, all properties of a \(\Sigma \)-protocol are satisfied.
II OR Proof

Let $Z = \{0, 1\}$ be an alphabet. We consider two Σ-protocols Σ_1 and Σ_2 for two languages L_1 and L_2 over the alphabet Z defined by two predicates R_1 and R_2. We assume that Σ_1 and Σ_2 use the same challenge set E which is given a group structure with a law \cdot. For $\Sigma_i, i \in \{1, 2\}$, we denote P_i the prover algorithm, V_i the verification predicate, E_i the extractor, and S_i the simulator.

Q.1 (AND proof) Construct a Σ protocol $\Sigma = \Sigma_1 \text{ AND } \Sigma_2$ for the language defined by

$$R((x_1, x_2), (w_1, w_2)) \iff R_1(x_1, w_1) \text{ AND } R_2(x_2, w_2)$$

The prover and the verifier are simply defined by a parallel execution of Σ_1 and Σ_2 together with the same challenge. So are the extractor and the simulator.

More precisely, $P((x_1, x_2), (w_1, w_2); r_1, r_2)$ runs $P_i(x_i, w_i; r_i) = a_i$ for $i = 1, 2$ and yield (a_1, a_2). Upon challenge $e \in E$, $P((x_1, x_2), (w_1, w_2), e; r_1, r_2)$ runs $P_i(x_i, w_i, e; r_i) = z_i$ for $i = 1, 2$ and yield (z_1, z_2). The verification holds $V((x_1, x_2), (a_1, a_2), e, (z_1, z_2))$ if and only if both $V_i(x_i, a_i, e, z_i)$ hold for $i = 1, 2$. The extractor $E((x_1, x_2), (a_1, a_2), e, e', (z_1, z_2), (z_1', z_2'))$ runs $w_i = E_i(x_i, a_i, e, e', z_i, z_i')$ for $i = 1, 2$ and yield (w_1, w_2). The simulator $S((x_1, x_2), e)$ runs $(a_1, z_1) = S_i(x_i, e)$ for $i = 1, 2$ and yields $((a_1, a_2), (z_1, z_2))$.

Note: it is important to use the same challenge for both protocols in order to avoid troubles in the extraction.

(OR proof) In the remaining of the exercise, we now let

$$R((x_1, x_2), w) \iff R_1(x_1, w) \text{ OR } R_2(x_2, w)$$

This predicate defines a new language L. We construct a new Σ-protocol $\Sigma = \Sigma_1 \text{ OR } \Sigma_2$ for L by

- $P((x_1, x_2), w; r_1, r_2)$ finds out i such that $R_i(x_i, w)$ holds, sets $j = 3 - i$, then picks a random $e_j \in E$ and runs $S_j(x_j, e_j; r_1) = (a_j, e_j, z_j)$. Then, it runs $P(x_i, w; r_2) = a_i$ and yield (a_1, a_2).
- Upon receiving e, $P((x_1, x_2), w; e; r_1, r_2)$ sets $e_i = e - e_j$, runs $P(x_i, w, e_i; r_2) = z_i$ and yields (e_1, e_2, z_1, z_2).

The verification predicate is

$$V((x_1, x_2), (a_1, a_2), e, (e_1, e_2, z_1, z_2)) \iff \begin{cases} e = e_1 + e_2 \text{ AND } \\ V_1(x_1, a_1, e_1, z_1) \text{ AND } \\ V_2(x_2, a_2, e_2, z_2) \end{cases}$$

Q.2 Show that Σ is complete and works in polynomial time.
The protocol P is a finite sequence of polynomial time operations or subroutines, so it is polynomial. Since V_1 and V_2 have a polynomially bounded complexity, so does V. We already know that E is polynomially samplable. So Σ works in polynomial time (except that we did not specify yet the extractor and the simulator).

If the protocols are honestly run, we have $S_j(x_j, e_j) \rightarrow (a_j, e_j, z_j)$. So, by the property of the simulator for Σ_j, we have that $V_j(x_j, a_j, e_j, z_j)$ holds. Since w is a correct witness for x_i in Σ_i, since $P(x_i, w; r_2) = a_i$ and $P(x_i, w, e_i; r_2) = z_i$, due to the completeness of Σ_i, we have that $V_i(x_i, a_i, e_i, z_i)$ holds. Since we further have $e_i = e - e_j$, the last condition for $V((x_1, x_2), (a_1, a_2), e, (e_1, e_2, z_1, z_2))$ to hold is satisfied. So, Σ satisfies the completeness property of Σ-protocols.

Q.3 Construct an extractor E for Σ and show that it works, in polynomial time.

If $V((x_1, x_2), (a_1, a_2), e, (e_1, e_2, z_1, z_2))$ and $V((x_1, x_2), (a_1, a_2), e', (e_1', e_2', z_1', z_2'))$ hold with $e \neq e'$, we must have either $e_1 \neq e_1'$ or $e_2 \neq e_2'$. Let assume that $e_1 \neq e_1'$. Then, we know that $V_1(x_1, a_1, e_1, z_1)$ and $V_1(x_1, a_1, e_1', z_1')$ hold. So, we can run the E_1 extractor on $(x_1, a_1, e_1, e_1', z_1, z_1')$ to extract a witness w for x_1 in L. Clearly, w is also a witness for (x_1, x_2) in L. The method is similar in the case $e_2 \neq e_2'$.

Clearly, we obtain a polynomially bounded extractor.

Q.4 Construct a simulator S for Σ and show that it works, in polynomial time.

Given (x_1, x_2) and e, we pick a random e_1 and let $e_2 = e - e_1$. Then, we run $S_1(x_1, e_1) \rightarrow (a_1, e_1, z_1)$ and $S_2(x_2, e_2) \rightarrow (a_2, e_2, z_2)$. The output is $((a_1, a_2), e, (e_1, e_2, z_1, z_2))$. This defines our simulator S.

Clearly, this works in polynomial time.

We let $a = (a_1, a_2)$ and $z = (e_1, e_2, z_1, z_2)$. We have

$$\Pr[S \rightarrow a, e, z|e] = \sum_{e_1 + e_2 = e} \Pr[e_1] \Pr[S_1 \rightarrow a_1, e_1, z_1|e_1] \Pr[S_2 \rightarrow a_2, e_2, z_2|e_2]$$

Since S_1 and S_2 are simulators for Σ_1 and Σ_2, we have

$$\Pr[S \rightarrow a, e, z|e] = \sum_{e_1 + e_2 = e} \Pr[e_1] \Pr[S_j \rightarrow a_j, e_j, z_j|e_j] \Pr[S_i \rightarrow a_i, e_i, z_i|e_i]$$

for whatever pair (i, j) such that $\{i, j\} = \{1, 2\}$. We let i be random defined by P. Clearly, the above sum equals $\Pr[S \rightarrow a, e, z|e]$. So, S satisfies the property of a simulator for Σ.
III Smashing SQUASH-0

The exercise is inspired by Smashing SQUASH-0 by Ouafi and Vaudenay. Published in the proceedings of Eurocrypt’09 pp. 300–312, LNCS vol. 5479, Springer 2009.

We consider an access control protocol called SQUASH-0 in which a client and a server hold a secret key K. In the protocol, the server sends a challenge C. The client must respond with

$$S = (\text{stoi}(C \oplus K))^2 \mod N$$

for a given modulus N, where stoi is a function transforming a bitstring into an integer by $\text{stoi}() = 0$ for the zero-length bitstring e, and

$$\text{stoi}(b||s) = b + 2 \times \text{stoi}(s)$$

for any bit $b \in \{0, 1\}$ and any bitstring s. By convention, the least significant bit has position 0. We further assume that N is larger than K and C.

Q.1 Let c_i be -1 raised to the power of the bit position i in C. Let k_i be -1 raised to the power of the bit position i in K.

Show that

$$S = \left(\frac{1}{4} \sum_{i,j} 2^{i+j} c_i c_j k_i k_j - \frac{2^\ell - 1}{2} \sum_i 2^i c_i k_i + \frac{(2^\ell - 1)^2}{4} \right) \mod N$$

where ℓ is the bitlength of N.

The XOR of two bits in the ± 1 representation is obtained by a regular multiplication. The ± 1 representation of bits can be converted to a 0-1 representation by $x \mapsto \frac{1-x}{2}$. So,

$$\text{stoi}(C \oplus K) = \sum_i 2^i \frac{1 - c_i k_i}{2} = \frac{2^\ell - 1}{2} - \frac{1}{2} \sum_i 2^i c_i k_i$$

By squaring it we obtain the result for S.

The SQUASH-0 proposal suggests to use Mersenne numbers for N. incidentally, we obtain $2^\ell - 1 = N$. We deduce

$$S = \left(\frac{1}{4} \sum_{i,j} 2^{i+j} c_i c_j k_i k_j \right) \mod N$$

In what follows, we assume that $N = 2^\ell - 1$. Deduce

$$S = \left(\frac{1}{4} \sum_{i,j} 2^{i+j} c_i c_j k_i k_j \right) \mod N$$

Q.2 Deduce that by using about ℓ^2 challenges and their responses, an adversary could recover K by solving a linear system of $O(\ell^2)$ equations with $\frac{\ell(\ell-1)}{2}$ unknowns.

As an example, consider $\ell = 1024$. What is the complexity of the attack?

Hint: define $\kappa_{i,j} = k_i k_j$.
We let $k_{i,j} = k_j$ for $i < j$. For $i = j$, we have $k_i k_j = 1$. For $i > j$, we have $k_i k_j = k_{j,i}$. So, all $k_i k_j$ can be expressed in terms of k’s. This way, the equation becomes linear. We have $\frac{t(t-1)}{2}$ unknowns k. So, by collecting enough equations (namely, about t^2), we can solve the linear system. The complexity of such algorithm is essentially $O(t^6)$. For $t = 2^{10}$, we need 2^{20} known challenges and we reach a complexity of 2^{60}, which is not practical.

Q.3 Given a function ϕ mapping a bitstring of length d to a real number, we define

$$\hat{\phi}(V) = \sum_x (-1)^{x \cdot V} \phi(x)$$

where \cdot denotes the dot product between two bitstrings and the sum goes on all bitstrings x of length d. For the function $\phi(x) = (-1)^{x \cdot U}$, show that $\hat{\phi}(V) = 2^d$ if $V = U$ and $\hat{\phi}(V) = 0$ otherwise. We write it $\hat{\phi}(V) = 2^d 1_{V = U}$.

We have

$$\hat{\phi}(V) = \sum_x (-1)^{x \cdot (U \oplus V)}$$

When $U \oplus V \neq 0$, this is zero. When $U = V$, this clearly is 2^d.

Q.4 In a chosen challenge attack, an adversary creates d challenges C_1, \ldots, C_d and all linear combinations of these challenges. Namely, $C(x_1 \ldots x_d) = x_1 C_1 + \cdots + x_d C_d$. Given a d-bit vector x, we thus define $C(x)$. We write x as an argument of S and c_i as well so that $S(x)$ is the response to challenge $C(x)$ and $c_i(x)$ is -1 raised to the power of the bit position i in $C(x)$. Let U_i be the d-bit vector consisting of the bit at position i of C_1, \ldots, C_d.

Deduce that

$$\hat{S}(V) = \frac{1}{4} \sum_{i,j} 2^{d+i+j} k_i k_j 1_{V = U_i \oplus U_j}$$

Hint: observe $c_i(x) = (-1)^{x \cdot U_i}$ and use Q.1 then Q.3.

The bit at position i of $C(x)$ is clearly $x \cdot U_i$. So,

$$c_i(x) = (-1)^{x \cdot U_i}$$

We now use Q.1. By the definition of \hat{S}, we have

$$\hat{S}(V) = \sum_x (-1)^{x \cdot V} \left(\frac{1}{4} \sum_{i,j} 2^{d+i+j} c_i(x) c_j(x) k_i k_j \right) \mod N$$

We can now use our observation and permute the two sums and obtain

$$\hat{S}(V) = \frac{1}{4} \sum_{i,j} 2^{i+j} k_i k_j \sum_x (-1)^{x \cdot (V \oplus U_i \oplus U_j)}$$

We can then use Q.3.
Q.5 With the same notations, we assume that the function mapping a non-ordered pair \(\{i, j\} \) with \(i \neq j \) to \(U_i \oplus U_j \) behaves like a random function. We further assume that \(d \) is pretty small. For each \(V \), estimate the number of non-ordered pairs \(\{i, j\} \) with \(i \neq j \) such that \(V = U_i \oplus U_j \).

Deduce that we get \(2^d \) equations modulo \(N \) with \(\ell(\ell - 1)2^{-d-1} \) unknowns \(\kappa_{i,j} \) on average taking values in \(\{-1, +1\} \).

\[
\text{We have } \frac{\ell(\ell-1)}{2} \text{ non-ordered pairs } \{i, j\} \text{ with } i \neq j. \text{ The vector } U_i \oplus U_j \text{ takes values in a set of } 2^d \text{ elements. So, each } V \text{ has (on average) } \ell(\ell - 1)2^{-d-1} \text{ pairs. Therefore, each equation } \hat{S}(V) \text{ uses this amount of unknowns } \kappa_{i,j} = k_ik_j.
\]

Q.6 We take \(d = 2 \log_2 \ell \) and solve each equation by exhaustive search. Deduce a chosen-challenge attack to break the algorithm.

How many chosen challenges does it use, asymptotically?

What is its complexity?

With \(d = 2 \log_2 \ell \), each equation has \(\frac{1}{2} \) unknown on average. So, exhaustive search works in constant time. We just solve \(O(\ell^2) \) equations using \(O(\ell^2) \) chosen challenges.

1: pick \(C^1, \ldots, C^d \)
2: for each \(x \), define \(C(x) \) and get \(S(x) \)
3: do an FFT transform on \(S \) to get the table \(\hat{S} \)
4: for each \(V \), make an exhaustive search on the expressed \(\kappa_{i,j} = \pm 1 \) in \(\hat{S}(V) \) to recover the \(\kappa \)'s
5: pick \(k_1 \) at random and infer \(k_i \) from \(\kappa_{1,i} \)

The FFT complexity is \(O(d2^d) \). So, the overall complexity is \(O(\ell^2 \log \ell) \). This is much better than \(O(\ell^6) \).
IV PIF Implies PAF

We consider a function family F_k taking inputs of length λ, making outputs of length λ, and where the key k is also of length λ. We consider the two following games:

Game PIF($A, 1^\lambda$):
1: pick some random coins k of length λ
2: pick r
3: run $A(r) \rightarrow x$
4: if $|x| \neq \lambda$, output 0 and stop
5: pick a random bit b
6: **if** $b = 0$ **then**
7: compute $y = F_k(x)$
8: **else**
9: pick a random y of λ bits
10: **end if**
11: run $A(y; r) \rightarrow b'$
12: output $b \oplus b' \oplus 1$

Game PAF($A, 1^\lambda$):
1: pick some random coins k of length λ
2: pick r
3: pick a random x of length λ
4: compute $y = F_k(x)$
5: run $A(y; r) \rightarrow x'$
6: output $1_{x = x'}$

We say that F_k is PIF-secure (resp. PAF-secure) if for all polynomially bounded A, we have that $Pr[\text{PIF}(A, 1^\lambda) = 1] - \frac{1}{2}$ (resp. $Pr[\text{PAF}(A, 1^\lambda) = 1]$) is a negligible function in terms of λ.

Q. Show that if F_k is PIF-secure, then it is PAF-secure.

Hint: based on a PAF-adversary A and some coins $p' = r'||p||b''$, define $A'(p') = x$ picked at random from r' then $A'(y, p') = 1$ if $A(y; p) = x$ and $A'(y, p') = b''$ otherwise. By considering A' as a PIF-adversary, look at the link between $Pr[\text{PIF}(A', 1^\lambda) = 1] - \frac{1}{2}$ and $Pr[\text{PAF}(A, 1^\lambda) = 1]$.
Consider an adversary A who is polynomially bounded. We want to show that $p = \Pr[\text{PAF}(A, 1^\lambda) = 1]$ is negligible.

For this, we define the adversary A' as follows: we let $r' = r \parallel p \parallel b''$ and $A'(r')$ picks a random x using r'. Then, $A'(y, r')$ runs $A(y, p) = x''$. If $x = x''$, it answers 1. Otherwise, it answers by b''.

When running the game $\text{PIF}(A', 1^\lambda)$, in the $b = 0$ case, we have $x = x''$ with probability p and A' never answers 0. We have $x \neq x''$ with probability $1 - p$ and A' answers 0 with probability $1/2$. So, A' answers 0 with probability $1 - p$. So,

$$\Pr[\text{PIF}(A', 1^\lambda) = 1 | b = 0] = \frac{1 - p}{2}$$

When $b = 1$, $A(y, p)$ has no information about x, so x is independent from x'' and we have $\Pr[x = x''] = 2^{-\lambda}$. Thus,

$$\Pr[\text{PIF}(A', 1^\lambda) = 1 | b = 1] = 2^{-\lambda} + \frac{1 - 2^{-\lambda}}{2}$$

Finally, we have

$$\Pr[\text{PIF}(A', 1^\lambda) = 1] = \frac{1}{2} - \frac{1}{2} \left(\frac{1 - p}{2} + 2^{-\lambda} + \frac{1 - 2^{-\lambda}}{2} \right) = \frac{1}{2}$$

$$= \frac{p}{4} + \frac{2^{-\lambda}}{4}$$

Since F_k is PIF-secure, we know that $\Pr[\text{PIF}(A', 1^\lambda) = 1] = \frac{1}{2}$ must be negligible. Thus,

$$-\frac{p}{4} + \frac{2^{-\lambda}}{4}$$

is negligible. Since $\frac{2^{-\lambda}}{4}$ is negligible, we obtain that $\frac{p}{4}$ is negligible. So, p is negligible.