Advanced Cryptography — Final Exam

Serge Vaudenay

18.6.2012

- duration: 3h00
- any document is allowed
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will not answer any technical question during the exam
- the answers to each exercise must be provided on separate sheets
- readability and style of writing will be part of the grade
- do not forget to put your name on every sheet!

1 Some Decisional Diffie-Hellman Problems

For each of the group families below, give <u>their order</u>, say <u>if they are cyclic</u>, and show that the Decisional Diffie-Hellman problem (DDH) <u>is not hard</u>.

Q.1 $G = \mathbb{Z}_p^*$ where *p* is an odd prime number. **Q.2** $G = \{-1, +1\} \times H$ where *H* is a cyclic group of odd prime order *q*. **Q.3** $G = \mathbb{Z}_q$ where *q* is a prime number.

2 MAC Revisited

Given a security parameter *s*, a set X_s and two groups \mathcal{Y}_s and \mathcal{K}_s , we define a *function family* by a deterministic algorithm mapping (s, k, x) for $k \in \mathcal{K}_s$ and $x \in \mathcal{X}_s$ to some $y \in \mathcal{Y}_s$, in time bounded by a polynomial in terms of *s*. (By abuse of notation, we denote $y = f_k(x)$ and omit *s*.)

We say that this is a *key-homomorphic function* if for any *s*, any $x \in X_s$, any $k_1, k_2 \in \mathcal{K}_s$, and any integers *a*, *b*, we have

$$f_{ak_1+bk_2}(x) = (f_{k_1}(x))^a (f_{k_2}(x))^b$$

Given a function family f, a function ℓ , and a bit b, we define the following game.

Game wPRF $_{\ell}(b)$: 1: pick random coins *r*

2: pick $x_1, \ldots, x_{\ell(s)} \in X_s$ uniformly 3: **if** b = 0 **then** 4: pick $k \in \mathcal{K}_s$ uniformly 5: compute $y_i = f_k(x_i), i = 1, \ldots, \ell(s)$ 6: **else** 7: pick a random function $g : X_s \to \mathcal{Y}_s$ 8: compute $y_i = g(x_i), i = 1, \ldots, \ell(s)$ 9: **end if** 10: $b' \leftarrow \mathcal{A}((x_1, y_1), \ldots, (x_{\ell(s)}, y_{\ell(s)}); r)$ Given some fixed *b*, *r*, and *k* or *g*, the game is deterministic and we define $\Gamma_{0,r,k}^{\mathsf{wPRF}}(\mathcal{A})$ or $\Gamma_{1,r,g}^{\mathsf{wPRF}}(\mathcal{A})$ as the outcome *b'*. We say that *f* is a *weak pseudorandom function* (*wPRF*) if for any polynomially bounded function $\ell(s)$ and for any probabilistic polynomial-time adversary \mathcal{A} , in the above game we have that $\Pr_{r,k}[\Gamma_{0,r,k}^{\mathsf{wPRF}}(\mathcal{A}) = 1] - \Pr_{r,g}[\Gamma_{1,r,g}^{\mathsf{wPRF}}(\mathcal{A}) = 1]$ is negligible in terms of *s*. (I.e., the probability that b' = 1 hardly depends on *b*.)

In what follows, we assume a polynomially bounded algorithm Gen which given *s* generates a prime number *q* of polynomially bounded length and a (multiplicatively denoted) group G_s of order *q* with basic operations (multiplication, inversion, comparison) computable in polynomial time. We set $X_s = \mathcal{Y}_s = G_s$ and $\mathcal{K}_s = \mathbf{Z}_q$. We define $f_k(x) = x^k$. We refer to this as the *DH*-based function.

- Q.1 Show that the DH-based function is: 1- a function family which is 2- key-homomorphic.
- **Q.2** Given (g, X, Y, Z) where g generates G and with $X = g^x$, $Y = g^y$, and $Z = g^z$, show that by picking $\alpha, \beta \in \mathbb{Z}_q$ uniformly at random, then the pair $(g^{\alpha}X^{\beta}, Y^{\alpha}Z^{\beta})$ has a distribution which is uniform in G^2 when $z \neq xy$. Show that it has the same distribution as (T, T^y) with T uniformly distributed in the z = xy case.
- **Q.3** Show that if the decisional Diffie-Hellman (DDH) problem is hard for Gen, then the DH-based function is a wPRF.

Hint: given an adversary \mathcal{A} playing the wPRF $_{\ell(s)}(b)$ game, construct a distinguisher $\mathcal{D}(g, X, Y, Z)$ for the DDH problem by taking $x_i = g^{\alpha_i} X^{\beta_i}$ and $y_i = Y^{\alpha_i} Z^{\beta_i}$, $i = 1, ..., \ell(s)$.

Given a bit *b*, we define a MAC scheme based on the three polynomial algorithms KG (to generate a symmetric key), TAG (to compute the authenticated tag of a message based on a key), VRFY (to verify the tag of a message based on a key).

We define the following game.

Game IND-CMA(*b*):

```
1: pick random coins r
```

```
2: if b = 0 then
```

```
3: run KG \rightarrow k
```

```
4: set up the oracle \mathsf{TAG}_k(\cdot)
```

```
5: b' \leftarrow \mathcal{A}^{\mathsf{TAG}_k(\cdot)}(;r)
```

```
6: else
```

```
7: pick a random function g: X_s \to \mathcal{Y}_s
```

```
8: set up the oracle g(\cdot)
```

```
9: b' \leftarrow \mathcal{A}^{g(\cdot)}(;r)
```

10: end if

Given some fixed *b*, *r*, and *k* or *g*, the game is deterministic and we define $\Gamma_{0,r,k}^{\mathsf{IND-CMA}}(\mathcal{A})$ or $\Gamma_{1,r,g}^{\mathsf{IND-CMA}}(\mathcal{A})$ as the outcome *b'*. We say that the MAC is IND-CMA-*secure* if for any probabilistic polynomial adversary \mathcal{A} , $\Pr_{r,k}[\Gamma_{0,r,k}^{\mathsf{IND-CMA}}(\mathcal{A}) = 1] - \Pr_{r,g}[\Gamma_{1,r,g}^{\mathsf{IND-CMA}}(\mathcal{A}) = 1]$ is negligible in terms of the security parameter *s*.

We construct a MAC scheme from a key-homomorphic function family as follows:

KG : pick uniformly at random and yield $k_1, k_2 \in \mathcal{K}_s$ TAG $_{k_1,k_2}(m)$: pick $x \in \mathcal{X}_s$, yield $(x, f_{mk_1+k_2}(x))$ VRFY $_{k_1,k_2}(m, (x, y))$: say whether $f_{mk_1+k_2}(x) = y$

Q.4 Assume that f is a key-homomorphic function family. Given an IND-CMA-adversary \mathcal{A} on the above MAC scheme, we define a wPRF-adversary \mathcal{B} on f as follows:

- 1: receives $x_1, y_1, ..., x_{\ell(s)}, y_{\ell(s)}$
- 2: pick $k_1 \in \mathcal{K}_s$ at random
- 3: simulate $b' \leftarrow \mathcal{A}$ for the *i*th chosen message query *m* from \mathcal{A} , simulate answer by $t_i = f_{k_i}(x_i)^{m_i} y_i$ (if there are more than $\ell(s)$ chosen message queries, abort)

Show that $\Gamma_{0,r,k_1}^{\mathsf{wPRF}}(\mathcal{B}) = \Gamma_{0,r,k_1}^{\mathsf{IND-CMA}}(\mathcal{A})$ and that $\Gamma_{1,r,g}^{\mathsf{wPRF}}(\mathcal{B}) = \Gamma_{1,r,g}^{\mathsf{IND-CMA}}(\mathcal{A})$. **Q.5** Show that if f is a key-homomorphic wPRF, then the above construction is IND-CMA-secure.

0.6 Propose an IND-CMA-secure MAC scheme based on the decisional Diffie-Hellman problem.

3 Perfect Unbounded IND is Equivalent to Perfect Secrecy

Given a message block space \mathcal{M} and a key space \mathcal{K} , we define a *block cipher* as a deterministic algorithm mapping (k,x) for $k \in \mathcal{K}$ and $x \in \mathcal{M}$ to some $y \in \mathcal{M}$. We denote $y = C_k(x)$. The algorithm must be such that there exists another algorithm C_k^{-1} such that for all k and x, we have $C_k^{-1}(C_k(x)) = x$.

We say that C provides *perfect secrecy* if for each x, the random variable $C_K(x)$ is uniformly distributed in \mathcal{M} when the random variable K is uniformly distributed in \mathcal{K} .

Given a bit *b*, we define the following game.

Game IND(*b*):

- 1: pick random coins r
- 2: pick $k \in \mathcal{K}$ uniformly
- 3: run $(m_0, m_1) \leftarrow \mathcal{A}(; r)$
- 4: compute $y = C_k(m_b)$
- 5: run $b' \leftarrow \mathcal{A}(y;r)$

Given some fixed b, r, k, the game is deterministic and we define $\Gamma_{b,r,k}^{\text{IND}}(\mathcal{A})$ as the outcome b'. We say that *C* provides *perfect unbounded IND-security* if for any (unbounded) adversary \mathcal{A} playing the above game, we have $\Pr_{r,k}[\Gamma_{0,r,k}^{\mathsf{IND}}(\mathcal{A}) = 1] = \Pr_{r,k}[\Gamma_{1,r,k}^{\mathsf{IND}}(\mathcal{A}) = 1]$. (That is, the probability that b' = 1 does not depend on b.)

Q.1 This question is to see the link with a more standard notion of perfect secrecy.

Let X be a random variable of support \mathcal{M} , let K be independent, and uniformly distributed in \mathcal{K} , and let $Y = C_K(X)$. Show that X and Y are independent if and only if C provides perfect secrecy as defined in this exercise.

Hint: first show that for all x and y, $\Pr[Y = y, X = x] = \Pr[C_K(x) = y] \Pr[X = x]$. Then, deduce that if C provides perfect secrecy, then Y is uniformly distributed which implies that X and Y are independent. Conversely, if X and Y are independent, deduce that for all x and y we have $\Pr[C_K(X) = y] = \Pr[C_K(x) = y]$. Deduce that $C_K^{-1}(y)$ is uniformly distributed then that $C_K(x)$ is uniformly distributed.

Q.2 Show that if *C* provides perfect secrecy, then it is perfect unbounded IND-secure.

Q.3 Show that if C is perfect unbounded IND-secure, then for all $x_1, x_2, z \in \mathcal{M}$, we have that $\Pr[C_K(x_1) =$ z] = Pr[$C_K(x_2) = z$] when *K* is uniformly distributed in \mathcal{K} . **Hint**: define a deterministic adversary $\mathcal{A}_{x_1,x_2,z}$ based on x_1, x_2 , and z.

Q.4 Deduce that if C is perfect unbounded IND-secure, then it provides perfect secrecy.