Advanced Cryptography — Final Exam

Serge Vaudenay
18.6.2012

– duration: 3h00
– any document is allowed
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– the answers to each exercise must be provided on separate sheets
– readability and style of writing will be part of the grade
– do not forget to put your name on every sheet!

1 Some Decisional Diffie-Hellman Problems

For each of the group families below, give their order, say if they are cyclic, and show that the Decisional Diffie-Hellman problem (DDH) is not hard.

Q.1 $G = \mathbb{Z}_p^*$ where p is an odd prime number.
Q.2 $G = \{-1, +1\} \times H$ where H is a cyclic group of odd prime order q.
Q.3 $G = \mathbb{Z}_q$ where q is a prime number.

2 MAC Revisited

Given a security parameter s, a set X_s and two groups Y_s and K_s, we define a function family by a deterministic algorithm mapping (s, k, x) for $k \in K_s$ and $x \in X_s$ to some $y \in Y_s$, in time bounded by a polynomial in terms of s. (By abuse of notation, we denote $y = f_k(x)$ and omit s.)

We say that this is a key-homomorphic function if for any s, any $x \in X_s$, any $k_1, k_2 \in K_s$, and any integers a, b, we have

$$f_{ak_1 + bk_2}(x) = (f_{k_1}(x))^a (f_{k_2}(x))^b$$

Given a function family f, a function ℓ, and a bit b, we define the following game.

Game wPRF$_{\ell}(b)$:
1. pick random coins r
2. pick $x_1, \ldots, x_{\ell(s)} \in X_s$ uniformly
3. if $b = 0$ then
4. pick $k \in K_s$ uniformly
5. compute $y_i = f_k(x_i), i = 1, \ldots, \ell(s)$
6. else
7. pick a random function $g : X_s \rightarrow Y_s$
8. compute $y_i = g(x_i), i = 1, \ldots, \ell(s)$
9. end if
10. $b' \leftarrow A((x_1, y_1), \ldots, (x_{\ell(s)}, y_{\ell(s)}); r)$
Given some fixed \(b, r, \) and \(k \) or \(g \), the game is deterministic and we define \(\Gamma_{0,r,k}^{\text{wPRF}}(\mathcal{A}) \) or \(\Gamma_{1,r,g}^{\text{wPRF}}(\mathcal{A}) \) as the outcome \(b' \). We say that \(f \) is a weak pseudorandom function (wPRF) if for any polynomially bounded function \(\ell(s) \) and for any probabilistic polynomial-time adversary \(\mathcal{A} \), in the above game we have that \(\Pr_{r,k}[\Gamma_{0,r,k}^{\text{wPRF}}(\mathcal{A}) = 1] - \Pr_{r,g}[\Gamma_{1,r,g}^{\text{wPRF}}(\mathcal{A}) = 1] \) is negligible in terms of \(s \). (I.e., the probability that \(b' = 1 \) hardly depends on \(b \).)

In what follows, we assume a polynomially bounded algorithm \(\text{Gen} \) which given \(s \) generates a prime number \(q \) of polynomially bounded length and a (multiplicatively denoted) group \(G \) of order \(q \) with basic operations (multiplication, inversion, comparison) computable in polynomial time. We set \(X = G \) and \(\mathcal{K}_0 = \mathbb{Z}_q \). We define \(f_k(x) = x^k \). We refer to this as the DH-based function.

Q.1 Show that the DH-based function is: 1- a function family which is 2- key-homomorphic.

Q.2 Given \((g,X,Y,Z) \) where \(g \) generates \(G \) and with \(X = g^s, Y = g^r, \) and \(Z = g^z \), show that by picking \(\alpha, \beta \in \mathbb{Z}_q \) uniformly at random, then the pair \((g^{\alpha X^\beta}, Y^\alpha Z^\beta) \) has a distribution which is uniform in \(G^2 \) when \(z \neq xy \). Show that it has the same distribution as \((T, T^y) \) with \(T \) uniformly distributed in the \(z = xy \) case.

Q.3 Show that if the decisional Diffie-Hellman (DDH) problem is hard for \(\text{Gen} \), then the DH-based function is a wPRF.

Hint: given an adversary \(\mathcal{A} \) playing the wPRF \(\ell(s)(b) \) game, construct a distinguisher \(\mathcal{D}(g,X,Y,Z) \) for the DDH problem by taking \(x_i = g^{\alpha_i} X^{\beta_i} \) and \(y_i = Y^{\alpha_i} Z^{\beta_i}, i = 1, \ldots, \ell(s) \).

Given a bit \(b \), we define a MAC scheme based on the three polynomial algorithms \(\text{KG} \) (to generate a symmetric key), \(\text{TAG} \) (to compute the authenticated tag of a message based on a key), \(\text{VRFY} \) (to verify the tag of a message based on a key).

We define the following game.

**Game **IND-CMA\((b)\):

1. pick random coins \(r \)
2. if \(b = 0 \) then
3. run \(\text{KG} \rightarrow k \)
4. set up the oracle \(\text{TAG}_k(\cdot) \)
5. \(b' \leftarrow \mathcal{A}_{\text{TAG}_k(\cdot)}(r) \)
6. else
7. pick a random function \(g : X \rightarrow Y \)
8. set up the oracle \(g(\cdot) \)
9. \(b' \leftarrow \mathcal{A}_{g(\cdot)}(r) \)
10. end if

Given some fixed \(b, r, \) and \(k \) or \(g \), the game is deterministic and we define \(\Gamma_{0,r,k}^{\text{IND-CMA}}(\mathcal{A}) \) or \(\Gamma_{1,r,g}^{\text{IND-CMA}}(\mathcal{A}) \) as the outcome \(b' \). We say that the MAC is IND-CMA-secure if for any probabilistic polynomial adversary \(\mathcal{A} \), \(\Pr_{r,k}[\Gamma_{0,r,k}^{\text{IND-CMA}}(\mathcal{A}) = 1] - \Pr_{r,g}[\Gamma_{1,r,g}^{\text{IND-CMA}}(\mathcal{A}) = 1] \) is negligible in terms of the security parameter \(s \).

We construct a MAC scheme from a key-homomorphic function family as follows:

\[
\text{KG} : \text{pick uniformly at random and yield } k_1, k_2 \in \mathcal{K}_0 \\
\text{TAG}_{k_1,k_2}(m) : \text{pick } x \in X, \text{ yield } (x, f_{mk_1+k_2}(x)) \\
\text{VRFY}_{k_1,k_2}(m,(x,y)) : \text{say whether } f_{mk_1+k_2}(x) = y
\]

Q.4 Assume that \(f \) is a key-homomorphic function family. Given an IND-CMA-adversary \(\mathcal{A} \) on the above MAC scheme, we define a wPRF-adversary \(\mathcal{B} \) on \(f \) as follows:
Show that if $Q.1$

This question is to see the link with a more standard notion of perfect secrecy.

$Q.4$

Deduce that if $Q.5$

Prove that $Q.6$

Propose an IND-CMA-secure MAC scheme based on the decisional Diffie-Hellman problem.

3 Perfect Unbounded IND is Equivalent to Perfect Secrecy

Given a message block space M and a key space K, we define a block cipher as a deterministic algorithm mapping (k, x) for $k \in K$ and $x \in M$ to some $y \in M$. We denote $y = C_k(x)$. The algorithm must be such that there exists another algorithm C_k^{-1} such that for all k and x, we have $C_k^{-1}(C_k(x)) = x$.

We say that C provides perfect secrecy if for each x, the random variable $C_k(x)$ is uniformly distributed in M when the random variable K is uniformly distributed in K.

Given a bit b, we define the following game.

1. receives $x_1, y_1, \ldots, x_{\ell(s)}, y_{\ell(s)}$
2. pick $k_1 \in K$ at random
3. simulate $b' \leftarrow A$
 for the ith chosen message query m from A, simulate answer by $t_i = f_{k_1}(x_i)^m y_i$
 (if there are more than $\ell(s)$ chosen message queries, abort)

Show that $\Gamma^w_{0,k_1}(B) = \Gamma^{IND-CMA}_{0,k_1}(A)$ and that $\Gamma^w_{1,k_1}(B) = \Gamma^{IND-CMA}_{1,k_1}(A)$.

$Q.5$ Show that if f is a key-homomorphic wPRF, then the above construction is IND-CMA-secure.

$Q.6$ Propose an IND-CMA-secure MAC scheme based on the decisional Diffie-Hellman problem.