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– duration: 3h00
– any document is allowed
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– the answers to each exercise must be provided on separate sheets
– readability and style of writing will be part of the grade
– do not forget to put your name on every sheet!

1 Circular RSA Encryption

Let n = pq and d = e−1 mod ϕ(n) define an RSA key pair. For some reason, we need to encrypt p
with the plain RSA cryptosystem.

Q.1 If y decrypts to p, show that an adversary who has only the public key at disposal can decrypt y.
Hint: think modulo p.

2 The Goldwasser-Micali Cryptosystem

Consider the group Z∗
n. We recall that if m is an odd factor of n, then the Jacobi symbol x 7→

( x
m

)
is

a group homomorphism from Z∗
n to {−1,+1}. I.e.,

(
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m

)
=
( x

m

)( y
m

)
. It further has the property

that
( x

mm′

)
=
( x

m

)( x
m′

)
. We consider that multiplication in Zn and the computation of the above Jacobi

symbol can each be done in O((logn)2).
Let s be a security parameter. We consider the following public-key cryptosystem.

Key Generation. Generate two different odd prime numbers p and q of bit size s, compute n = pq,
and find some z ∈ Z∗

n such that
(

z
p

)
=
(

z
q

)
=−1. The public key is (n,z) and the secret key is p.

Encryption. To encrypt a bit b ∈ {0,1}, pick r ∈U Z∗
n and compute c = r2zb mod n. The ciphertext

is c.
Decryption. To decrypt c, compute

(
c
p

)
and find b such that it equals (−1)b. The plaintext is b.

This cryptosystem is known as the Goldwasser-Micali cryptosystem.

Q.1 Show that the cryptosystem is correct. I.e., if the key generation gives (n,z) and p, if b is any bit, if
the encryption of b with the key (n,z) produces c, then the decryption of c with the key p produces
b.

Q.2 Analyze the complexity of the three algorithms in terms of s.
Q.3 Let N be the set of all n’s which could be generated by the key generation algorithm. Let Fact be

the problem in which an instance is specified by n ∈ N and the solution is the factoring of n.
Q.3a Define the key recovery problem KR related to the cryptosystem. For this, specify clearly what

is its set of instances and what is the solution of a given instance.



Q.3b Show that the KR problem is equivalent to the Fact problem. Give the actual Turing reduction
in both directions.

Q.4 Let QR be the problem in which an instance is specified by a pair (n,c) in which n ∈ N and( c
n

)
= 1. The problem is to decide whether or not c is a quadratic residue in Z∗

n.
Q.4a Define the decryption problem DP related to the cryptosystem. For this, specify clearly what

is its set of instances and what is the solution of a given instance.
Q.4b Show that the DP problem is equivalent to the QR problem. Give the actual Turing reduction

in both directions.

3 Faulty Multiplier

Let B be a basis. Given some integers x0, . . . ,xn−1, we say that the sequence [xn−1, . . . ,x0] represents x
if

x =
n−1

∑
i=0

xiBi

We say that [xn−1, . . . ,x0] is a reduced sequence if 0 ≤ xi ≤ B−1 for all i = 0, . . . ,n−1. We say that a
number x contains a block a if there exists n and a reduced sequence [xn−1, . . . ,x0] representing x, and
some i such that a = xi. We consider the schoolbook algorithms for addition and multiplication. These
are the methods that children learn at school for B = 10 and reduced sequences. We extend them to
any B value.

We work with a microprocessor using a built-in 32× 32-bit to 64-bit hardware multiplication.
Each 32× 32-bit to 64-bit multiplication is called an elementary multiplication. So, in the next we
let B = 232. We assume that there is a bug such that the result is always correct except when the first
operand is a special a0 value and the second one is a special b0 value in which case the result is a
constant c0 which is not equal to a0b0.

Q.1 Let a,b,c,u,v be five 32-bit blocks. Let x be represented by [a,b,c] and y be represented by
[u,v]. Using the schoolbook multiplication algorithm in basis B to multiply x by y, give the list of
elementary multiplications which are required to compute xy.

Q.2 Let w =

⌈√
b0B3−a0

B

⌉
and y be represented by [w,a0]. Assume that b0 ≤ B

4 − 1. Deduce that y

contains the block a0 and that y2 contains the block b0.
Hint: first show that √

(b0 +1)B−
√

b0B ≥ 1

then show that √
(b0 +1)B3 −a0

B
> w ≥

√
b0B3 −a0

B

and deduce that
√

(b0 +1)B3 > y ≥
√

b0B3.
In what follows, we assume that y does not contain the block b0 and that y2 does not contain the
block a0.

Q.3 Assume we want to raise y to some power k modulo n using the square-and-multiply with scanning
of the bits of the exponent from left to right. The leading bit of the exponent k being 1, let b denote
the second leading bit of k.

Q.3a Give the list of all multiplications this algorithm does when scanning these two bits in the two
cases: i.e., for b = 0 and b = 1.
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Q.3b Show that for the y from Q.2, this algorithm is likely to compute yk mod n correctly when
b = 0 whereas it does a computation error when b = 1.

Q.4 We assume a tamper-proof device implementing the RSA decryption with CRT acceleration,
square-and-multiply with scanning of the bits of the exponent from left to right, and the school-
book multiplication algorithm.

Q.4a Assuming that the second leading bits of d mod (p−1) and d mod (q−1) are different, using
the y of Q.2, give an algorithm producing x such that xe mod n is equal to y modulo either p
or q but not modulo both.

Q.4b Deduce a factoring attack on RSA using this device.

4 Trapdoor Sbox

Let n be an integer. We consider the set Zn
2 as a vector space. Given a vector x, xk denotes its k-th

component (which is a bit). Additions are implicitly takes modulo 2. Product of bits are also implicitly
taken modulo 2. The dot product α · x between two vectors means ∑n

k=1 αkxk. We also multiply a bit
by a vector by multiplying the bit to each component.

Let α,β,γ ∈ Zn
2. Let i and j be two fixed indices such that αi = β j = 1 and γ j = 0. Let w be the

total number of bits set to 1 in γ. Let A be the subset of Zn
2 of all tuples in which the i-th component is

zero. Let B be the subset of Zn
2 of all tuples in which the j-th component is zero. Let ϕ be a bijection

from A to B.
Let p be a function from Zn

2 to A defined by p(x)k = xk for all k 6= i and p(x)i = 0.
Let v = (0, . . . ,0,1,0, . . . ,0) ∈ Zn

2 be a constant vector, where v j = 1.
We construct a function S on Zn

2 as follows.

S(x) = ϕ(p(x))+

(
(α · x)+(β ·ϕ(p(x)))+ ∏

k:γk=1
ϕ(p(x))k

)
v

Q.1 Show that S is a permutation.
Hint: show that S(x)= S(x′) implies p(x)= p(x′) for any x and x′ and show that S(x+u)= S(x)+v
for a constant vector u and any x.

Q.2 Compute LPS(α,β).
Hint: first give a simple expression of (α · x)+(β ·S(x)).

Q.3 Deduce a way to construct an Sbox with a given high LPS(α,β).
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