Advanced Cryptography — Midterm Exam

Serge Vaudenay

7.5.2012

- duration: 3h00
- any document is allowed
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will not answer any technical question during the exam
- the answers to each exercise must be provided on separate sheets
- readability and style of writing will be part of the grade
- do not forget to put your name on every sheet!

1 Decryption Attack on Broadcast RC4

The RC4 pseudorandom number generator is defined by a state and an algorithm which update the state and produces an output byte. In RC4, a state is defined by

- two indices i and j in \mathbf{Z}_{256} ;
- one permutation S of \mathbf{Z}_{256} .

By abuse of notation we write S(x) for an arbitrary integer x as for $S(x \mod 256)$. The state update and output algorithm works as follows:

1:
$$i \leftarrow i + 1$$

2:
$$j \leftarrow j + S(i)$$

- 3: exchange the values at position S(i) and S(j) in table S
- 4: output $z_i = S(S(i) + S(j))$
- **Q.1** Assume that the initial S is a random permutation with uniform distribution and that i and j are set to 0.
 - **Q.1a** What is the probability that $[S(1) \neq 2 \text{ and } S(2) = 0]$?
 - **Q.1b** If $S(1) \neq 2$ and S(2) = 0 hold, show that the second output z_2 is always 0.
 - **Q.1c** In other cases, we assume that $z_2 = 0$ with probability close to $\frac{1}{256}$. Deduce $p = \Pr[z_2 = 0]$. What do you think of this probability?
- **Q.2** Here, we let $p = \Pr[z_2 = 0]$ and we assume that $\Pr[z_2 = x] = \frac{1-p}{N-1}$ for all $x \neq 0$ and N = 256. We consider that a message m is encrypted by XORing to the stream generated by RC4. I.e., the ciphertext c is such that $c_i = m_i \oplus z_i$. We assume that the same message m is encrypted n many times and that the adversary collected the ciphertext. Each encryption starts with an independent random permutation. Let n_x be the number of occurrences of the byte x in c_2 . I.e., there are n_x collected ciphertexts c such that $c_2 = x$ in total.
 - **Q.2a** Compute the expected value of n_x for $x = m_2$ then for any fixed $x \neq m_2$.
 - **Q.2b** For $x \neq m_2$ fixed, express $n_{m_2} n_x$ as a sum of *n* independent identically distributed (iid) random variables X_i which take values in $\{-1, 0, 1\}$ and compute their expected value.

Q.2c We recall the Hoeffding bound:

Theorem 1 (Hoeffding). Let X_1, \ldots, X_n be *n* iid random variables which take values in [a, b] and expected value μ . For any t > 0, we have

$$\Pr\left[\sum_{i=1}^{n} X_i \le \mu - t\right] \le e^{-\frac{2nt^2}{(b-a)^2}}$$

Give an upper bound for $\Pr[n_{m_2} \leq n_x]$ for any $x \neq m_2$.

- Deduce an upper bound for the event that n_{m_2} is not the largest counter value n_x .
- **Q.2d** Propose an algorithm to decrypt m_2 and a lower bound on its probability of success. What is the required number of ciphertexts to decrypt well almost certainly? Propose a numerical application with the values from this exercise.

2 Generic Attacks on Multiple Encryption

We consider a block cipher E with *n*-bit blocks and *n*-bit keys. We denote by D the decryption algorithm. A *r*-time encryption is a process of encrypting a plaintext P into $C = E_{k_r}(\cdots E_{k_1}(P)\cdots)$. We consider the problem of key recovery for a multiple encryption, with a few known plaintext/ciphertext pairs. I.e., we assume that the adversary knows some pairs (P_i, C_i) , for $i = 1, \ldots, r$, and want to find all (k_1, \ldots, k_r) which would encrypt each P_i to C_i . In what follows, we consider the worst case complexity.

- **Q.1** Give an algorithm for r = 1. What are its time complexity and memory complexity?
- **Q.2** Give an algorithm for r = 2. What are its time complexity and memory complexity?

Q.3 We now consider r = 4.

Q.3a Given $P_1, P_2, B_1 \in \{0, 1\}^n$, how many (B_2, k_1, k_2) triplets are such that $E_{k_2}(E_{k_1}(P_i)) = B_i$ for i = 1, 2?

Propose an algorithm with time-complexity $\mathcal{O}(2^n)$ and memory complexity $\mathcal{O}(2^n)$ to list them all.

- **Q.3b** Given P_1, P_2, B_1, C_1, C_2 and a list of (B_2, k_1, k_2) such that $E_{k_2}(E_{k_1}(P_i)) = B_i$ for i = 1, 2 from the previous algorithm, propose an algorithm to list all (k_1, \ldots, k_4) such that $E_{k_4}(\cdots E_{k_1}(P_i)\cdots) = C_i$ for i = 1, 2 and $E_{k_2}(E_{k_1}(P_1)) = B_1$.
- **Q.3c** Propose an algorithm with time-complexity $\mathcal{O}(2^{2n})$ and memory complexity $\mathcal{O}(2^n)$ to solve the key recovery problem.
- **Q.4** We now consider r = 7.
 - **Q.4a** Given $P_1, P_2, B_1, B_2 \in \{0, 1\}^n$, how many (k_1, k_2, k_3) triplets are expected to satisfy the relations $E_{k_3}(E_{k_2}(E_{k_1}(P_i))) = B_i$ for i = 1, 2? Propose an algorithm with time-complexity $\mathcal{O}(2^{2n})$ and memory complexity $\mathcal{O}(2^n)$ to list them all.
 - **Q.4b** Given $P_1, \ldots, P_7, B_1, B_2 \in \{0, 1\}^n$, propose an algorithm with time-complexity $\mathcal{O}(2^{2n})$ and memory complexity $\mathcal{O}(2^n)$ to list all (B_3, \ldots, B_7) such that there exists a (k_1, k_2, k_3) triplets are such that $E_{k_3}(E_{k_2}(E_{k_1}(P_i))) = B_i$ for $i = 1, \ldots, 7$.
 - **Q.4c** By combining the algorithms of Q.4b and Q.3, propose an algorithm to do the key recovery for 7-multiple encryption, with time complexity $\mathcal{O}(2^{4n})$ and memory complexity $\mathcal{O}(2^n)$.

3 Another Attack on Broadcast RSA

- **Q.1** Let $N_1 = 235$, $N_2 = 451$, $N_3 = 391$ be three RSA moduli, all working with the public exponent e = 3. Let $y_1 = 99$, $y_2 = 238$, $y_3 = 278$ be the respective encryption of the same x under the three RSA keys. Compute x without factoring any moduli. Hint: $(N_2N_3)^{-1} \mod N_1 = 31$, $(N_1N_3)^{-1} \mod N_2 = 72$, $(N_1N_2)^{-1} \mod N_3 = 277$.
- **Q.2** Let (N_i, e_i) , i = 1, ..., r be r different RSA public keys, with pairwise coprime moduli. Let $y_i = x^{e_i} \mod N_i$, for some positive x which is lower than all moduli. Let $e = \max_i e_i$
 - and $N = N_1 \cdots N_r$. We assume that an adversary knows all public keys and all y_i but not x.
 - **Q.2a** Show that for each *i*, there is a monic polynomial $P_i(z)$ of degree *e* which can be computed by the adversary and such that $P_i(x) \equiv 0 \pmod{N_i}$.
 - **Q.2b** Deduce that there is a monic polynomial P(z) of degree e which can be computed by the adversary and such that $P(x) \equiv 0 \mod N$.
 - **Q.2c** Deduce an algorithm to solve x, for r large enough. How large? We recall the Coppersmith result: Let f(z) be a monic polynomial of degree e in one variable modulo N. There is an efficient algorithm to find all roots x such that $0 \le x \le N^{\frac{1}{e}}$.