
Advanced Cryptography — Midterm Exam

Solution

Serge Vaudenay

13.5.2014

– duration: 3h00

– documents are allowed

– a pocket calculator is allowed

– communication devices are not allowed

– the exam invigilators will not answer any technical question during the exam

– readability and style of writing will be part of the grade

The exam grade follows a linear scale in which each question has the same weight.

1 Cryptosystem based on Matrices

We define a new cryptosystem. Let p be a large prime number. Let a ∈ Zp and b ∈ Z∗
p be

arbitrary such that a2 + b2 ∈ Z∗
p. Let G be the matrix G =

(
a b
−b a

)
. The public parameters

are given by (p, a, b). We let x ∈ Z be a secret key and let Y = Gx be a public key. To encrypt
m ∈ Zp, we pick a random integer r, compute U = Gr, V = Y r, and w = V1,1 + m mod p
(where V1,1 is the upper left coefficient of V ). The ciphertext is the pair (U,w).

Q.1 Explain how to decrypt.

We note that Ux = V . So, m = w − (Ux)1,1 mod p.

Q.2 Let J =

(
0 1
−1 0

)
. Show that the following properties are equivalent.

– p mod 4 = 1;

– there is an invertible 2 × 2 matrix P with coefficients in Zp such that P−1JP is a
diagonal matrix;

– there is an invertible 2 × 2 matrix P with coefficients in Zp such that P−1GP is a
diagonal matrix.

HINT: we recall that a 2 × 2 matrix is diagonalizable if and only if it has two different
eigenvalues or it is already diagonalized.



We first explain the hint. In the linear algebra class, there was a theorem saying that
whenever a n×n matrix has n pairwise different eigenvalues, then it is diagonalizable.
If a 2× 2 matrix is diagonalizable and its two eigenvalues are equal, then the matrix
must be diagonal. So, non-diagonal and diagonalizable is equivalent to having two
different eigenvalues for 2× 2 matrices.

Let I =

(
1 0
0 1

)
. Since we can write G = aI + bJ or J = 1

b (G − aI) and since

P−1IP = I, the facts that J or G is equivalent to a diagonal matrix are equivalent:
if J = PDP−1 with D diagonal, then G = P (aI+bD)P−1 where aI+bD is diagonal;
and if G = PDP−1 with D diagonal, then J = P 1

b (D− aI)P−1 where 1
b (D− aI) is

diagonal.
Now, if J is equivalent to a diagonal matrix, then its characteristic polynomial must

have roots in the field. This polynomial is

∣∣∣∣∣−x 1
−1 −x

∣∣∣∣∣ = x2+1. So, if J is equivalent to

a diagonal matrix, then −1 must have a square root. This is equivalent to (−1)
p−1
2 =

+1 which is itself equivalent to p mod 4 = 1.
Conversely, if p mod 4 = 1, then x2 + 1 has two square roots which are different.
Since the characteristic polynomial has two different roots, the 2 × 2 matrix J is
equivalent to a diagonal matrix.

Q.3 For p mod 4 = 1, show that the key recovery problem reduces to the discrete logarithm
problem in Z∗

p.

To solve Gx = Y , we first extract a square root θ of −1 then find eigenvectors
of J to form a matrix P such that P−1JP is a diagonal matrix. Then, we have
to solve (P−1GP )x = P−1Y P . By observing that P−1GP and P−1Y P are diagonal
matrices, this reduces to solving two equations of form gx = y: we can solve λx1

1 = y1
and λx2

2 = y2 where λ1 and λ2 are the eigenvalues of G and y1 and y2 are the ones
of Y . If λ1 is a generator of Z∗

p, then x1 is unique modulo p − 1 so it must be the
solution x. If λ2 is a generator of Z∗

p, then x2 is unique modulo p− 1 so it must be
the solution x. But if neither λ1 and λ2 are generators, then we must compute their

order n1 and n2, respectively, by solving λi = g
p−1
ni , then solve x ≡ x1 (mod n1)

and x ≡ x2 (mod n2) by standard CRT tricks.

Q.4 For p mod 4 = 3, we define K = Zp[x]/(x
2 + 1), the field of Zp extended with a root θ

of x2 + 1. By working with matrices with coefficients in K, show that the key recovery
problem reduces to the discrete logarithm problem in K∗.
HINT: show that J is diagonalizable as a matrix with coefficients in K.

Although −1 has no square root in Zp, it has the square roots θ and −θ in K. By

taking P =

(
1 1
θ −θ

)
we have P−1JP =

(
θ 0
0 −θ

)
. Again, we observe that P−1GP =(

a+ bθ 0
0 a− bθ

)
and P−1Y P =

(
a′ + b′θ 0

0 a′ − b′θ

)
for some a′ and b′. So, we can

just solve (a + bθ)x = a + b′θ and (a − bθ)x = a − b′θ. This is a discrete logarithm
problem in K∗.



Q.5 In general, give a positive integer q such that Gq is the identity matrix.

As we have seen, the discrete logarithm problem (G,Y ) reduces to a discrete loga-
rithm problem in either Z∗

p or in K∗. They have order p− 1 and p2 − 1 respectively.
Since p− 1 divides p2 − 1, in general, q = p2 − 1 is a multiple of the order of G.



2 Predicate Encryption

We define a new cryptographic primitive called predicate encryption. We consider a predicate
P . A predicate encryption for P is defined by four algorithms:

Setup(1λ) → (pp,msk): (probabilistic) given a security parameter λ, it generates a key pair
where msk is the master key (secret) of the authority and pp is the public parameter,
which is distributed to all participants.

Keygen(msk, k) → sk: (probabilistic) given a key k for the predicate P (k, .), the authority
generates a secret key sk for a participant Bob.

Enc(pp, ind,m) → c: (probabilistic) given a value ind called index and a message m, Alice
generates a ciphertext c. Note that this is independent of k and Bob.

Dec(sk, c): (deterministic) given the ciphertext and the secret sk, this decryption algorithm
yields m if P (k, ind) is true and ⊥ otherwise. (I.e., this is the correctness property of the
primitive.)

The security of this primitive specifies that from c, Bob (holding sk) does not learn m if
P (k, ind) is false.

Q.1 In identity-based encryption (IBE), there is an authority holding a master key, distributing
some public parameters to everyone, and giving a secret key to each user. We want that
if, e.g., Alice is offline and cannot connect to retrieve the public key of Bob to any public
directory, she can still encrypt a message which can only be decrypted by Bob (and the
authority). More precisely, we have

IBE.Setup(1λ) → (pp,msk): generate the public parameters and the master key.

IBE.Keygen(msk, id) → sk: given the identity of Bob, generate his secret key.

IBE.Enc(pp, id,m) → c: encrypt a message m for a given identity.

IBE.Dec(sk, c) → m: decrypt the message given the correct secret key.

We want that a user who does not hold the correct sk learns nothing about m.

By well choosing a predicate, construct one IBE scheme with the above syntax based on
predicate encryption.

Give an argument for the security.

An index and a key are just an identity: ind = k = id. We set P (k, ind) to true if
and only if k = ind. The algorithms for IBE match the ones of predicate encryption:
IBE.Setup = Setup, IBE.Keygen = Keygen, IBE.Enc = Enc, and IBE.Dec = Dec.
Clearly, the correctness property is satisfied.
If sk is not the correct key, since Dec returns ⊥, the holder does not learn more than
⊥. So, the confidentiality of m is preserved.

Q.2 In ciphertext-policy attribute-based encryption (CP-ABE), there is an authority holding a
master key, distributing some public parameters to everyone, and giving a secret key to
each user. Each user has list z = (z1, . . . , zn) of attributes associated to a semantic. (E.g.,
if member of EPFL or not, if MSc student or faculty member or admin staff, if registered
to the Advanced Cryptography class, etc.) Each message is encrypted with a formula ϕ. It
can only be decrypted for holders of attributes satisfying the formula ϕ. (E.g., expressing
that the message can only be decrypted by MSc students or admin staff of EPFL who
registered to Advanced Cryptography.) More precisely, we have



CPABE.Setup(1λ) → (pp,msk): generate the public parameters and the master key.
CPABE.Keygen(msk, z) → sk: given the attributes of Bob, generate his secret key.
CPABE.Enc(pp, ϕ,m) → c: encrypt a message m for a formula ϕ.
CPABE.Dec(sk, c): obtain m is ϕ(z) holds and ⊥ otherwise.
We want that a user who holds attributes not satisfying ϕ learns nothing about m.
By well choosing a predicate, construct one CP-ABE scheme with the above syntax based
on predicate encryption.
Give an argument for the security.

An index ind is a formula: ind = ϕ. A key k is a set of attributed: k = z. We
set P (z, ϕ) to true if and only if z satisfies ϕ. The algorithms for CP-ABE match
the ones of predicate encryption: CPABE.Setup = Setup, CPABE.Keygen = Keygen,
CPABE.Enc = Enc, and CPABE.Dec = Dec. Clearly, the correctness property is
satisfied.
If ϕ(z) is not satisfied, since Dec returns ⊥, the holder does not learn more than ⊥.
So, the confidentiality of m is preserved.

Q.3 Given a modulus N and a length n, we assume that, when ind = (a1, . . . , an) and k =
(b1, . . . , bn) are in Zn

N , we have a predicate encryption scheme for inner product (IP), i.e.,
for the predicate

P (k, ind) ⇐⇒ a1b1 + · · ·+ anbn ≡ 0 (mod N)

We denote this scheme by (IP.SetupnN , IP.KeygennN , IP.EncnN , IP.DecnN ).
Based on an IP scheme with the above syntax, construct one predicate encryption scheme
where users are associated to a variable x and messages are encrypted with a polyno-
mial f of bounded degree d, and the decryption works if x is a root of f . More pre-
cisely, construct a scheme (POL.SetupdN ,POL.KeygendN ,POL.EncdN ,POL.DecdN ) in which
POL.KeygendN (msk, x) gives sk, POL.EncdN (pp, f,m) gives c, and POL.DecdN (sk, c) = m if
and only if f(x) = 0.

We set n = d + 1. We set ind to the coefficients of f(x) and k = (1, x, x2, . . . , xd).
We let POL.SetupdN = IP.SetupnN , POL.KeygendN (msk, x) = IP.KeygennN (msk, k),
POL.EncdN (pp, f,m) = IP.EncnN (pp, ind,m), and POL.DecdN = IP.DecnN .

Q.4 We now give several variables to the participants. Extend the previous construction to
multivariate polynomials.

We now set k to the evaluation of all monomials of degree at most d. So, n =(
d+s−1
s−1

)
. Then, we expand the polynomial and use the coefficients in same order in

ind.

Q.5 We consider a predicate P (a, b) which is a CNF (conjunctive normal form) of terms of
form ai = bj . I.e., P (a, b) =

∧
u

∨
v(aiu,v = bju,v). (∨ is a notation for the OR and ∧ is

a notation for the AND.) Given some (secret) random ru, we consider the polynomial
f(a, b) =

∑
u ru

∏
v(aiu,v − bju,v).

Q.5a If P (a, b) is true, show that f(a, b) = 0.



If P (a, b) is true, for all u, there exists at least one v such that aiu,v = bju,v . So,∏
v(aiu,v − bju,v) = 0 and we obtain f(a, b) = 0.

Q.5b Given a and b fixed such that P (a, b) is false, show that Pr[f(a, b) = 0] is small, over
the distribution of the ru’s.
HINT: assume that N is prime.

If P (a, b) is false, there exists some u such that for all v, aiu,v 6= bju,v . Let s =∏
v(aiu,v − bju,v). By isolating the term in the sum corresponding to the index u, we

write f(a, b) = rus + Z with Z independent from ru. For N prime, s 6= 0 implies
s ∈ Z∗

N . So, f(a, b) = 0 is equivalent to ru = −Z
s . We deduce Pr[f(a, b) = 0] = 1

N .

Q.5c From the IP scheme, show that we can construct a predicate encryption scheme for
the predicate P . How large is n in the above construction?

We use the previous construction for multivariate polynomials with the polynomial

f . The length n corresponds to the number of monomials. It is n =
(
d+s−1
s−1

)
where

d is the size of the largest clause (i.e., the maximal number of v’s for the same u).



3 Distribution Fitting

Let p be a prime number and ` ≤ log2 p. Let r = p mod 2`. Let V ∈U Zp be uniformly
distributed. Let X = V mod 2`. We want to distinguish the distribution of X from the
uniform distribution over {0, . . . , 2` − 1}.

Q.1 Compute the distribution of X: depending on x ∈ {0, . . . , 2` − 1}, provide a formula to
compute Pr[X = x] in terms of x, r, p, `.

Let p = q2`+r be the Euclidean division of p by 2`, i.e., r = p mod 2`. For x < r, the
set of preimages of x by v 7→ v mod 2` is {x, 2`+x, . . . , q2`+x}. So, Pr[X = x] = q+1

p .

For x ≥ r, the set of preimages of x by v 7→ v mod 2` is {x, 2`+x, . . . , (q−1)2`+x}.
So, Pr[X = x] = q

p .

By using q
p = 2−` − r

p2`
, we obtain Pr[X = x] = 2−` − r

p2`
+ 1

p1x<r.

Q.2 Given a single sample, compute the best advantage of a distinguisher to distinguish the
distribution of X from a uniform one.

The best advantage is the statistical distance, i.e.

Adv =
1

2

∑
x

∣∣∣Pr[X = x]− 2−`
∣∣∣

So, we have

Adv =
r

2

∣∣∣∣1p − r

p2`

∣∣∣∣+ 2` − r

2

∣∣∣∣− r

p2`

∣∣∣∣
=

r

2

(
1

p
− r

p2`

)
− 2` − r

2
× r

p2`

=
r

p
(1− r2−`)

Q.3 We assume that p is selected arbitrarily among prime numbers of k bits. With ` fixed and
in the worst case for p, how large should k be so that the best advantage given a single
sample is lower than 2−`?

r is arbitrary between 0 and 2` − 1. In the worst case, r(1 − r2−`) is reached for

r = 1
22

`. So, we can use the bound Adv ≤ 2`

4p . Thus, we need k ≥ 2` − 2 to ensure

Adv ≤ 2−`.

Q.4 Assume the identified condition is satisfied, approximate the Chernoff information by the
squared Euclidean imbalance and estimate the number of samples needed to distinguish
the distribution of X from a uniform one.



Since we made sure that the distribution of X is close to uniform, we can use

C(X,U) ≈ 2`

8 ln 2

∑
x

(
Pr[X = x]− 2−`

)2
We have

C(X,U) ≈ 2`

8 ln 2

∑
x

(
Pr[X = x]− 2−`

)2
=

2`

8 ln 2
× r

(
1

p
− r

p2`

)2

+
2`

8 ln 2
(2` − r)

(
− r

p2`

)2

=
2`

8 ln 2
× r

p2

(
1− r

2`

)
The worst case is for r ≈ 1

22
`. The number of samples to distinguish X from a

uniform distribution can be approximated to

1

C(X,U)
≈ p2

22`
× cte ≈ 22(k−`) × cte

for p ≈ 2k.


