
Advanced Cryptography — Final Exam

Solution

Serge Vaudenay

26.6.2015

– duration: 3h
– any document allowed
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade

WARNING: for each question, specially the ones of type “show that...”, it is expected that
the response contains understandable sentences.
The exam grade follows a linear scale in which each question has the same weight.

1 Davies-Meyer Construction

Given a security parameter λ, we construct two sets Gλ andMλ and a function Cλ mapping
an element h ∈ Gλ and an element k ∈ Mλ to an element Cλ

k (h) ∈ Gλ. (From now on, and
for more readability, we do not write the λ superscript any longer.) We assume that G is
given an additive group structure, with neutral element 0 ∈ G. As an instance, we assume
that G = {0, 1}λ. We assume a block cipher C on the block space G and the key space M :
given k ∈ M and h ∈ G, it encrypts h into Ck(h). We define a keyed function F by

Fm(h) = Cm(h) + h

We define the following games, played by a polynomially bounded algorithm AO inter-
acting with an oracle O:

Game Γ0:
1: pick m ∈ M with uniform distribution
2: run c = AOm

3: return c

oracle query Om(h):
1: return Cm(h)

Game Γ1:
1: pick F ∗ a random function from G to G

with uniform
2: run c = AOF∗

3: return c

oracle query OF ∗(h):
1: return F ∗(h)



Game Γ2:
1: pick C∗ a random permutation ofH with

uniform distribution
2: run c = AOC∗

3: return c

oracle query OC∗(h):
1: return C∗(h)

We let pi be the probability that Γi returns 0. We say that C is a pseudorandom function
(PRF) if for any polynomially bounded A we have that p1 − p0 is negligible. We say that
C is a pseudorandom permutation (PRP) if for any polynomially bounded A we have that
p2 − p0 is negligible.

We define two more oracles.

oracle query O1(h):
1: if h is not new, answer as previously (by

keeping a table of previous queries)
2: else pick a random h∗ ∈ G and return h∗

oracle query O2(h):
1: if h is not new, answer as previously (by

keeping a table of previous queries)
2: else pick a random h∗ ∈ G which is dif-

ferent from all previously drawn values
and return h∗

We let Γ ′
i be the game

1: run c = AOi

2: return c

and let p′i be the probability that it returns 0.

Q.1 Show that for any A, we have p1 = p′1 and p′2 = p2.

O1 defines the lazy sampling technique. It makes OF ∗ and O1 generate the
same distribution. So, p1 = p′1.
Similarly, OC∗ and O2 generate the same distribution. So, p′2 = p2.

Q.2 Let B be the event that the oracle O1 picks some h∗ which was previously drawn.

Show that Pr[B] is negligible.

Given the number q of fresh queries, we have less than q2 pairs (h, h′). For
each pair, the probability that F ∗(h) = F ∗(h′) is 2−λ. So, Pr[B] ≤ q22−λ. Since
q is polynomially bounded, Pr[B] is negligible in terms of λ.

Q.3 Show that p′2 − p′1 is negligible.

HINT: show that Pr[Γ ′
2 = 0] = Pr[Γ ′

1 = 0|¬B].



(This is actually the difference lemma.)
The distribution of h∗ in Γ ′

2 is just the distribution in Γ ′
1 conditioned to the

event B not occurring. So, p′2 = Pr[Γ ′
2 = 0] = Pr[Γ ′

1 = 0|¬B]. Hence,

p′2 =
Pr[Γ ′

1 = 0,¬B]

1− Pr[B]
≤ Pr[Γ ′

1 = 0]

1− Pr[B]
=

p′1
1− Pr[B]

So, p′2− p′1 ≤ p′2 Pr[B] ≤ Pr[B]. Hence, p′2− p′1 is negligible due to the previous
question.

Q.4 Deduce that if C is a PRP, then C is a PRF as well.

From all previous questions we obtain that p2 − p1 is negligible.
If C is a PRP, then p2−p0 is negligible. Since p2−p1 is negligible, then p1−p0
is negligible as well. Hence, C is a PRF.

Q.5 If C is a PRF, show that F is a PRF.

Consider A playing the PRF game Γ with an oracle implementing Fm(·). This
oracle can be defined with a nested oracle Om: Fm(h) = Om(h)+h. We compare
Γ with the same game Γ ′ in which the nested oracle is replaced by OF ∗. I.e.,
the oracle in Γ ′ is defined by h 7→ F ∗(h) + h. By considering A′ as simulating
A and the oracle except the nested one, we obtain a PRF game on C. Since C
is a PRF, the two games have negligible difference p′ − p in the probability of
success.
Now, compare Γ ′ with the same game Γ ′′ based on OF ∗. Clearly, h 7→ F ∗(h)+h
and h 7→ F ∗(h) have the same distribution when F ∗ is a uniformly distributed
function from H to H. So, the probability of success is the same in both games:
p′′ = p′.
Finally, p′′ − p is negligible. So, F is a PRF.

Q.6 (Bonus question)
Do you see any reason why we do not use (h, k) 7→ Ck(h) as a compression function to
construct a hash function

H(k1, . . . , kn) = Cn̄(Ckn(· · ·Ck1(0) · · · ))
where n̄ is an element of M encoding the length n of k1, . . . , kn), although it is a PRF?
HINT: what would Ralph Merkle or Ivan Damg̊ard say?

We use compression functions in the Merkle-Damg̊ard construction in which
we can prove that if the compression function is collision resistant, then the
hash function is collision resistant. If we use (h, k) 7→ Ck(h) as a compres-
sion function, we cannot argue that it is collision resistant since for all k,
(C−1

k (y), k) maps to the same value y.
So, we would like to use a collision resistant compression function. The func-
tion (h, k) 7→ Ck(h) is not but the Davies-Meyer one is likely to be so.



2 Fiat-Shamir Revisited (Again)

This exercise is inspired from Bernhard-Pereira-Warinschi, How Not to Prove
Yourself: Pitfalls of the Fiat-Shamir Heuristic and Applications to Helios, Asi-
acrypt 2012, LNCS vol. 7658, Springer.

Throughout this exercise, we consider some prime number q and some element g generating
a multiplicative group G of order q. We assume that basic operations (multiplication,
inversion, comparison) are easy but that the discrete logarithm problem is hard.

We consider the Schnorr Σ-protocol for the relation R defined by

R(y, x) ⇐⇒ gx = y

for y ∈ G and x ∈ Zq. In the Σ-protocol, the prover picks k ∈ Zq and sends r = gk. The
verifier picks e ∈ Zq and sends it to the prover. The prover answers by s = ex + k mod q.
The verifier checks that rye = gs. The regular Fiat-Shamir transform constructs a non-
interactive proof of knowledge from a Σ protocol by using a random oracle H. We consider
here the weak Fiat-Shamir which is defined as follows:

Proof(y, x; k): compute r = gk, e = H(r), s = ex+ k mod q. The output is (r, s).
Verify(y, r, s): check that ryH(r) = gs. If this passes, the output is accept. Otherwise, the

output is reject.

Here, we assume that the random oracle H returns elements of Zq.

Q.1 – What is the difference between Proof/Verify and the Schnorr signature scheme?
– Show that it is equivalent.
– What is the difference between the weak Fiat-Shamir transform and the regular

Fiat-Shamir transform?
– Apply the regular Fiat-Shamir transform to the Schnorr proof.

The Schnorr signature uses H(m, r) instead of H(r), where m is the message
to sign.
Another difference is that the Schnorr signature uses (e, s) instead of (r, s). It
is equivalent since we can compute (r, s) from (e, s) by r = y−egs and (e, s)
from (r, s) by e = H(y, r).
In the regular Fiat-Shamir transform, we use H(y, r) instead of H(r).
If we apply it to the Schnorr protocol, we obtain
Proof(y, x; k): compute r = gk, e = H(y, r), s = ex + k mod q. The output is

(r, s).
Verify(y, r, s): check that ryH(y,r) = gs. If this passes, the output is accept.

Otherwise, the output is reject.



Q.2 We study the properties of the weak Fiat-Shamir transform on the Schnorr protocol.
Q.2a Show that the above Schnorr protocol satisfies the special soundness property.

Deduce that it is a proof of knowledge of the discrete logarithm of y.

Given the parameters g and q, the instance y, and two transcripts (r, e, s) and
(r, e′, s′) sharing the same r but with e ̸= e′, we have rye = gs and rye

′
= gs

′
so

y = g
s−s′
e−e′ . Hence, we can extract x = s−s′

e−e′
mod q which is the discrete logarithm

of y. So, the Schnorr protocol satisfies special soundness.
It was proven in the course that this implies that the protocol is a proof of
knowledge: the extractor essentially rewinds the prover so that it uses the same
r twice but use two different e and e′ to obtain s and s′ and deduce x.
Normally, the Fiat-Shamir transform of this protocol becomes a non-interactive
proof of knowledge. One point here is that we use the weak Fiat-Shamir trans-
form and we will see that we do not obtain a non-interactive proof of knowledge.

Q.2b In the weak Fiat-Shamir transform, y is not taken into account to compute e. Con-
sequently, it is as if y could be established after e is received.
Show that we can forge a triplet (y, r, s) passing Verify(y, r, s) and for which we
cannot compute the discrete logarithm of y, except in negligible cases.
HINT: first select r and s at random.

We can pick r ∈ G, s ∈ Zq and y = (r−1gs)
1

H(r) . Then, Verify(y, r, s) is equiv-
alent to ryH(r) = gs which is true for H(r) ̸= 0.
If H(r) = 0, we can just try again with another r until H(r) ̸= 0.

Q.2c Let H ′ be a random oracle producing elements of G. Prove that an algorithm A
interacting with H ′ and producing a pair (s, k) such that H ′(s) = gk can be trans-
formed into an algorithm B which solves the discrete logarithm problem.
HINT: simulate H ′ by H ′(s) = ygH(s).

B takes y as input and wants to compute x such that y = gx. It simulates A and
H ′. The answer H ′(s) from H ′ is simulated by H ′(s) = ygH(s). If H produces
Zq elements with uniform distribution, H ′ produces elements in G with uniform
distribution. If A succeeds to produce (s, k) such that H ′(s) = gk, we deduce
ygH(s) = gk so y = gk−H(s). Hence, B can output x = k −H(s) mod q.

Q.2d Inspired by the Fiat-Shamir paradigm, further show that in the forgery of (y, r, s)
from Q.2b, we can prove that we ignore the discrete logarithm of y.
HINT: take r = H ′(s).

We take s ∈ Zq, r = H ′(s) ∈ G by using another random oracle H ′, and

y = (r−1gs)
1

H(r) (if H(r) = 0, we try again with another s).

Since ryH(r) = gs, the discrete logarithm of y is
s−logg r

H(r)
mod q. So, knowing

logg y is equivalent to knowing k = logg r. In the previous question, we have
shown that knowing k implies solving the discrete logarithm problem. Since
we assume that the discrete logarithm is hard, we cannot compute the discrete
logarithm of y in the above forgery.



Q.3 We study here consequences on some deniable authentication scheme.

We define the relation R′(yA, yB, x) ⇔ gx ∈ {yA, yB} where x is the witness for the
instance (yA, yB). We consider the following protocol ρ:

Prover Verifier
xA s.t. yA = gxA yA, yB

pick kA, sB , eB ∈ Zq

rA = gkA , rB = gsBy−eB
B

rA,rB−−−−−−−−−−−−−−−−→
eA = c− eB mod q

c←−−−−−−−−−−−−−−−− pick c ∈ Zq

sA = eAxA + kA mod q
eA,eB ,sA,sB−−−−−−−−−−−−−−−−→ check eA + eB mod q = c

rAy
eA
A = gsA , rBy

eB
B = gsB

Q.3a We specified ρ when the prover has a witness xA such that yA = gxA . Show that
there is an alternate prover algorithm for ρ making the protocol work by using a
witness xB such that yB = gxB .

Have you seen a protocol like this before?

We just invert A and B on the prover side:
Prover Verifier

xB s.t. yB = gxB yA, yB

pick kB , sA, eA ∈ Zq

rB = gkB , rA = gsAy−eA
A

rA,rB−−−−−−−−−−−−−−−−→
eB = c− eA mod q

c←−−−−−−−−−−−−−−−− pick c ∈ Zq

sB = eBxB + kB mod q
eA,eB ,sA,sB−−−−−−−−−−−−−−−−→ check eA + eB mod q = c

rAy
eA
A = gsA , rBy

eB
B = gsB

The protocol ρ is actually an OR proof of two Schnorr protocols.

Q.3b Prove that ρ satisfies the special soundness property of Σ protocols.

Given two valid transcripts (rA, rB, c
i, eiA, e

i
B, s

i
A, s

i
B) using the same rA, rB with

different c1 and c2, we obtain e1A+e1B = c1 and e2A+e2B = c2, so either e1A ̸= e2A
or e1B ̸= e2B. If e

1
A ̸= e2A, we have two transcripts (rA, e

1
A, s

1
A) and (rA, e

2
A, s

2
A)

for the Schnorr proof from which we extract the discrete logarithm of yA. If
e1B ̸= e2B, we have two transcripts (rB, e

1
B, s

1
B) and (rB, e

2
B, s

2
B) for the Schnorr

proof from which we extract the discrete logarithm of yB. So, in any case we
extract x such that gx ∈ {yA, yB}.

Q.3c Prove that ρ satisfies the honest verifier zero-knowledge property of Σ protocols.

We simulate a transcript by first picking eA, eB, sA, sB then taking c = eA +
eB mod q, rA = y−eA

A gsA, and rB = y−eB
B gsB .

Q.3d Prove that ρ is a Σ protocol for R (go through the checklist for Σ protocols) and
construct a non-interactive proof system for R.



First of all, the protocol respects the structure of Σ protocols: it has three
moves, starting from the prover, the verifier picks a random challenge c, and
he verifies a condition based on the transcript only. It is complete: if both
participants follow their algorithm, the verifier accepts.
To construct a non-interactive proof, we proceed as fol-
lows:

1: pick kA, sB, eB ∈ Zq, rA = gkA, rB = gsBy−eB
B

2: take c = H(yA, yB, rA, rB)
3: take eA = c− eB mod q, sA = eAxA + kA mod q
4: return (rA, rB, eA, eB, sA, sB)

We used the strong Fiat-Shamir transform here by including yA and yB in
the random oracle inputs. The verification checks check eA + eB mod q =
H(yA, yB, rA, rB), rAy

eA
A = gsA, and rBy

eB
B = gsB .

Q.3e Alice wants to send an email to Bob using deniable authentication. For this, both
Alice and Bob exchange their public keys yA and yB and their “proofs” (rA, sA) and
(rB, sB) such that Verify(yA, rA, sA) and Verify(yB, rB, sB) hold. Then, Alice modifies
the non-interactive proof of Q.3d by adding her message m as input to the random
oracle, like for signature schemes, and uses this modified non-interactive proof to
authenticate her message.
If (yA, rA, sA) and (yB, rB, sB) were proofs of knowledge of the discrete logarithm of
yA and yB, show that Bob is ensured that the message comes from Alice and that
he cannot forward this evidence to anyone else.
NOTE: a semi-formal argument is OK for this question.

We have shown that the Fiat-Shamir transform produces signature schemes
which are existentially unforgeable without a witness. From the view point of
Bob, a witness is either his secret x′ or Alice’s secret x. Assuming that it is
hard for Alice to obtain Bob’s secret, then the signature must come from Alice.
However, from the view point of someone else, the signature can come either
from Bob or from Alice. Bob can indeed easily forge the signature with his x′

(due to Q.3a). So, Bob cannot prove that the signature comes from Alice.

Q.3f In the above deniable authentication scheme, by using the fact that the weak Fiat-
Shamir transform does not make (yA, rA, sA) be a proof of knowledge of the discrete
logarithm of yA, show that Bob can maliciously register (yB, rB, sB) and later show
to someone else that the message originated from Alice.
NOTE: a semi-formal argument is OK for this question.

Bob can use Q.2b and Q.2d to create (yB, rB, sB). He can later prove that he
ignores the discrete logarithm of x. Then, by showing a signature from Alice
and a proof of ignorance of x, he proves that the signature comes from Alice.


