
Advanced Cryptography — Final Exam

Solution

Serge Vaudenay

21.6.2016

– duration: 3h
– any document allowed
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade

The exam grade follows a linear scale in which each question has the same weight.

1 Σ Protocol in an Group of Exponent 2

Given an integer s, we consider an Abelian group G (with multiplicative notations) such
that for all x ∈ G, we have x2 = 1. We assume that there are deterministic polynomial
time algorithms to compute the order n of G, to multiply and to compare two group
elements. More precisely, given x and y we can compute xy and say whether x = y. For
x = (x1, . . . , xm, y) ∈ Gm+1 and w = (w1, . . . , wm) ∈ {0, 1}m, we consider the following
relation:

R(x;w)⇐⇒ y = xw1
1 · · · xwm

m

We consider the following protocol:

Prover Verifier
w x

pick r = (r1, . . . , rm) ∈U {0, 1}m
a = xr1

1 · · · xrm
m

a−−→
e←−− pick e ∈U {0, 1}

z = r ⊕ ew
z−−→ check xz1

1 · · · xzm
m = aye

where ⊕ denotes the XOR operation (exclusive OR) between two bits and ∈U denotes a
random selection with uniform distribution and fresh coins.

Q.1 Following the terminology of Σ protocols, show that the above protocol has special
soundness.



Given x, a, and the answers z0 and z1 to e = 0 and e = 1, we compute
w = z0 ⊕ z1. We obtain y = xw1

1 · · · xwm
m . So, we have an extractor for special

soundness.

Q.2 Following the terminology of Σ protocols, show that the above protocol is special HVZK
(special honest verifier zero-knowledge).

We first observe that in the proposed protocol, z is uniformly distributed when
e = 0 (this is just r = (r1, . . . , rm)). When e = 1, this is the XOR between r
and w. Since r is uniform and independent from w, z is uniformly distributed
in this case as well.
Next, we observe that we can always compute a from z, e, and y.
Given x and e, we pick z ∈ {0, 1}m uniformly at random and deduce a from
the value y inside x. Clearly, the obtained (a, e, z) has a correct distribution
with e imposed. So, we have a perfect simulator for special HVZK.

Q.3 Show that the proposed protocol is a Σ protocol.

The protocol follows the structure of Σ protocols:
– the verifier is polynomially bounded;
– it has 3 moves initiated by the prover;
– the challenge message from the verifier is selected at random from a set

independently from the first message from the prover;
– the acceptance condition only depends on (x, a, e, z).
Furthermore, we have prover special soundness and special HVZK. So, we have
a Σ protocol.

This exercise was quite simple. Nevertheless, we spotted two frequent mistakes.

– The extractor and the simulator for Σ protocols work with transcripts in-
stead of views.

– For the extractor, we cannot assume that the answers z0 and z1 to e = 0
and e = 1 are z0 = r and z1 = r ⊕ w and simply answer that z0 ⊕ z1 is the
witness. Instead, we should show that z0 ⊕ z1 is a valid witness from the
properties of z0 and z1: given that xze = aye, then xz1−z0 = y.

Also: for the simulator, it is important to show that the output has the same
distribution as a natural transcript.



2 On Generator Generation in Diffie-Hellman Problems

In the Computational Diffie-Hellman (CDH) Problem and the Decisional Diffie-Hellman
(DDH) Problem, there is a security parameter (integer) s as input to a probabilistic
polynomial-time (PPT) algorithm Gen(1s) → (q, parms, g) to generate a prime number
q together with an element g and some parameters params. The values q and params define
a group G = (q, params) of order q in which g is a generator. We denote G = ⟨g⟩ and x ∈ G
to mean that g generates G and x belongs to G. We assume multiplicative notations in
the group. We assume we have two deterministic polynomial-time algorithms MUL and EQ
such that for all x, y ∈ G, we have MUL(G, x, y) = xy and EQ(G, x, y) = 1x=y.

Q.1 Show that we can design deterministic polynomial-time algorithms UN, INV, and POW
such that for all x ∈ G and e ∈ Z, we have UN(G, x) = 1, INV(G, x) = x−1, and
POW(G, x, e) = xe.
CAUTION: be careful with the e = 0 and e < 0 cases.

We define POW(G, x, e) for e positive by using the square-and-multiply algo-
rithm using MUL.
Then, we can define UN(G, x) = POW(G, x, q) as xq = 1. Note that it is
necessary to have one element group element x to compute 1. This is the case
when we have, for instance, a generator.
We can also define INV(G, x) = POW(G, x, q − 1) as xq−1 × x = 1.
Finally, we can define POW(G, x, 0) = UN(G, x) and POW(G, x, e) =
POW(G, x, e mod q) for any e ∈ Z.
COMMENT after correction: we cannot just say that UN(G, x) just answer 1
as this “1” is not necessarily the integer 1 that we know. Here, we want to
output the neutral element from the group and we need to reconstruct it from
the given parameters.
In the correction, we have seen several times some non-polynomial solutions.
For instance, compute POW(G, x, e) using e − 1 multiplications or finding
INV(G, x) by exhaustive search. These answers are not acceptable.

In this exercise, we look at the influence on the g generation by Gen in the Gen-CDH
and Gen-DDH problems. We assume a first PPT algorithm Setup(1s) → (q, parms) to
generate the group G = (q, parms) and we assume that from G we can extract a generator
g = Generator(G) using a deterministic polynomial-time algorithm Generator. We define
two generating algorithms.

GenFixed(1s; ρ):
1: run Setup(1s; ρ)→ G = (q, parms)
2: run g = Generator(G)
3: output (q, parms, g)

We call GenFixed the setup with fixed generator g.



GenRand(1s; ρ):
1: split ρ into two independent sequences ρ1 and ρ2
2: run Setup(1s; ρ1)→ G = (q, parms)
3: run g = Generator(G)
4: generate a ∈ Z∗

q with uniform distribution from ρ2
5: set h = POW(G, g, a)
6: output (q, parms, h)

We call GenRand the setup with random generator h.

The DDH problem specifies two distributions with parameter s:

Source S0(Gen):
1: pick a large enough sequence of indepen-

dent fair coin flips ρ
2: run Gen(1s; ρ)→ (q, parms, g)
3: pick x, y ∈ Zq with uniform distribution

(x, y, and ρ are independent)
4: set X = gx, Y = gy, Z = gxy

5: output (q, parms, g,X, Y, Z)

Source S1(Gen):
1: pick a large enough sequence of indepen-

dent fair coin flips ρ
2: run Gen(1s; ρ)→ (q, parms, g)
3: pick x, y, z ∈ Zq with uniform distribu-

tion (x, y, z, and ρ are independent)
4: set X = gx, Y = gy, Z = gz

5: output (q, parms, g,X, Y, Z)

The Gen-DDH problem consists of distinguishing S0(Gen) and S1(Gen). We stress that the
DDH problem is relative to Gen; this is why we call it the Gen-DDH problem. We define
the advantage

AdvGen-DDH(A) = Pr[A(S0(Gen)) = 1]− Pr[A(S1(Gen)) = 1]

The Gen-DDH is hard if and only if for all PPT distinguisherA, AdvGen-DDH(A) is negligible.

Q.2 Given a GenRand-DDH distinguisherA, construct a GenFixed-DDH distinguisher B with
the same advantage and a similar complexity.



We define B as follows:

B(q, params, g,X, Y, Z):
1: set G = (q, params)
2: pick a ∈ Z∗

q with uniform distribution
3: set h = POW(G, g, a), X ′ = POW(G,X, a), Y ′ = POW(G, Y, a), Z ′ =

POW(G,Z, a)
4: run b = A(G, h,X ′, Y ′, Z ′)
5: output b

Clearly, with the sources S0(GenFixed) and S1(GenFixed), the input
(q, params, g) to B follows the distribution of GenFixed. So, (q, params, h)
is identical to the distribution induced by GenRand. Hence, the input
(q, params, h,X, Y, Z) of A in Step 4 follows either source S0(GenRand) or
S1(GenRand). Therefore, the advantage of B equals the advantage of A.
The complexity overhead in B corresponds to Step 2 and Step 3 which are
polynomial.
COMMENT after correction: some students just answered that
A(G, g,X, Y, Z) will work as it is a special case. We only know that A
works for random inputs so it is not guaranteed that it works for the special
input g. This is the main problem in this exercise which requires to randomize
inputs. We did not accept these answers. The same problem occurred in the
next questions.

Q.3 Show that if the GenFixed-DDH is hard, then the GenRand-DDH problem is hard.

Any PPT GenRand-DDH distinguisher has the same advantage of some PPT
GenFixed-DDH distinguisher. If the GenFixed-DDH is hard, it must be negligi-
ble. So, the GenRand-DDH problem is hard.

Unfortunately, we have no implication in the other direction for the DDH problem, but
there is for the CDH problem.

The computational Diffie-Hellman (CDH) problem has instances defined by the follow-
ing source:

Source S(Gen):
1: pick a large enough sequence of independent fair coin flips ρ
2: run Gen(1s; ρ)→ (q, params, g)
3: pick x, y ∈ Z∗

q with uniform distribution (x, y, and ρ are independent)
4: set X = gx, Y = gy {the solution to the problem is gxy}
5: output (q, params, g,X, Y )

Given a CDH solver A, we define

SuccGen-CDH(A) = Pr[A(S(Gen)) = gxy]

The Gen-CDH is hard if and only if for all PPT solver A, SuccGen-CDH(A) is negligible.



Q.4 Given a GenRand-CDH solver A, construct a GenFixed-CDH solver B with similar com-
plexity and

SuccGenRand-CDH(A) = SuccGenFixed-CDH(B)

We define B as follows:

B(q, params, g,X, Y ):
1: set G = (q, params)
2: pick a ∈ Z∗

q with uniform distribution
3: set g′ = POW(G, g, a)
4: set X ′ = POW(G,X, a)
5: set Y ′ = POW(G, Y, a)
6: run Z ′ = A(G, g′, X ′, Y ′)
7: set Z = POW(G,Z ′, 1/a mod q)
8: output Z

Just like for DDH, we show that (q, params, g′, X ′, Y ′) follows the distribution
of S(GenRand) with solution Za, where Z is the solution to the GenFixed-CDH
problem. So, the probability of success is preserved. Similarly, the complexity
overhead is small.
COMMENT after correction: we have seen several pearls for which we gave a
penalty: gxy = gxya

2
ga

−2
, (gaxy)−a = gxy, or (gx)u = gu

x
!!!

Q.5 Given a GenFixed-CDH solver A, we denote

ερ = Pr[A(S(GenFixed)) = gxy|ρ]

the probability of success when ρ in S is fixed. So, GenFixed always returns the same
group and generator (due to ρ being fixed). Only x, y, and possible coins used by A
remain random.

Given a GenFixed-CDH solver A, show that we can construct an algorithm Mu such
that for any integer x and y (i.e., not only for random x and y) and any ρ, we have

Mu(q, params, g, gx, gy) = gxy

for GenFixed(1s; ρ)→ (q, params, g) with probability at least ερ over the distribution of
x, y, and possible coins by A.



We just have to randomize gx and gy. There is a particular case when one of
the two is equal to 1. We can check it using EQ. In this case, the algorithm
should answer 1 and it is correct with probability 1.
In other cases, we pick a and b in Z∗

q uniformly at random and run

A(q, params, g, gax, gby) = Z then output Z
1
ab . Now, gax and gby are indepen-

dent and uniformly distributed in G − {1}. So they are correctly distributed
and A(q, params, g, gax, gby) = gabxy with probability SuccGenFixed-CDH(A). So,

Z
1
ab = gxy with this probability.

Mu(q, params, g,X, Y ): {say X = gx and Y = gy}
1: set G = (q, params) and u = UN(G, g)
2: if EQ(G,X, u) = 1 or EQ(G, Y, u) = 1 then
3: output u
4: end if
5: pick a, b ∈ Z∗

q with uniform distribution
6: compute Xa = POW(G,X, a) and Y b = POW(G, Y, b)
7: run Z = A(q, params, g,Xa, Y b) {we should have Z = gabxy}
8: output Z

1
ab

Q.6 Show that we can construct an algorithm In such that for any integer x and any ρ, we
have

In(q, params, g, gx) = g
1
x

for GenFixed(1s; ρ)→ (q, params, g) with probability at least εwρ for w = O(log q).

We have g
1
x = gx

q−2
.

Using Mu from the previous question we compute gx
q−2

with a square-and-
multiply algorithm. If w denotes the number of squares or multiplications to
perform, we have w = O(log q).
Once ρ is fixed, all w operations are independent. Since they each succeed with
probability ερ, the overall process succeeds with probability at least εwρ .
COMMENT after correction: several times we say incorrect answers such as
In(g, gx) = Mu(gx, gx, g) of other answers where the generator given as input
to g was not the fixed one g. However, we constructed g to work for this very
particular fixed g and our main problem is to construct one which works on
average for a random g.

Q.7 Given a GenFixed-CDH solver A, construct a GenRand-CDH solver B with similar com-
plexity and

SuccGenRand-CDH(B) ≥
(
SuccGenFixed-CDH(A)

)O(log q)



Let Mu and In be the algorithms from the previous ques-
tions.

B(q, params, h,X, Y ): {say h = ga, X = gax, Y = gay}
1: set G = (q, params)
2: run g = Generator(G)

3: run h′ = In(G, g, h) {we should have h′ = g
1
a}

4: run A = Mu(G, g,X, Y ) {we should have A = ga
2xy}

5: run B = Mu(G, g, h′, A) {we should have B = gaxy}
6: run Z = Mu(G, g, h′, B) {we should have Z = gxy}
7: output Z

Clearly, this works with probability at least Eρ(ε
w+3
ρ ). By using the Jensen

inequality, we obtain Eρ(ε
w+3
ρ ) ≥ Eρ(ερ)

w+3 =
(
SuccGenFixed-CDH(A)

)w+3
. Then,

we use w = O(log q).
We could also have computed h′ = g

1
a2 directly (by ga

q−2
) and obtained B = gxy

to save one Mu operation.
COMMENT after correction: in the copies given during the exam, the question
was given with

SuccGenFixed-CDH(B) ≥
(
SuccGenRand-CDH(A)

)O(log q)

The mistake was corrected during the exam and written on the black board.

Q.8 Show that GenFixed-CDH is hard if and only if GenRand-CDH is hard.

If GenFixed-CDH is hard, any GenRand-CDH solver has a probability of suc-
cess equal to the one of a GenFixed-CDH solver (due to Q.4). So, it must be
negligible. Hence, GenRand-CDH is hard.
If GenRand-CDH is hard, any GenFixed-CDH solver has a probability of success
bounded by the one of a GenRand-CDH solver raised to the power 1

O(log q)
(due

to Q.7). Since GenFixed returns q, log q must be polynomially bounded. So, this
power must be negligible. Hence, GenFixed-CDH is hard.
COMMENT after correction: We gave 2/3 of the grade if one direction was
missing. We gave a penalty when nothing was said about the negligible advan-
tage. We gave no points to answers such as “if we can easily solve GenRand
then we can easily solve GenFixed as it is a particular case”.



3 Equivalent PRF Notions

We consider a function family fs which depends on a security parameter s. Given s, the
function fs takes a key k ∈ Ks and an input x ∈ Xs. It produces an output y = fs(k, x) ∈
Ys. To have lighter notations, from now on the subscript s is omitted. We further write
the input k of f as a subscript to write fk(x) = f(k, x). We say that the function family f
is a pseudorandom function (PRF) if it can be computed in polynomial time (in terms of
s) and if for every probabilistic polynomial-time (PPT) algorithm A, the function AdvPRFA
(this is a function in terms of s) is a negligible function where

AdvPRFA = Pr[Γ PRF
0 (A) = 1]− Pr[Γ PRF

1 (A) = 1]

and Γ PRF
b (A) is defined with a bit b as follows:

Game ΓPRF
b (A):

1: pick s ∈ K at random
2: set ρ to a long enough sequence of random coins
3: set i = 1
4: (q, xi)← A(; ρ)
5: while q ̸= final do
6: if xi ∈ {x1, . . . , xi−1} then
7: abort {it is not allowed to repeat a query}
8: end if
9: if b = 0 then

10: set yi = fs(xi)
11: else
12: set yi ∈ Y at random
13: end if
14: i← i+ 1
15: (q, xi)← A(y1, . . . , yi−1; ρ)
16: end while
17: output xi

Here, A returns a pair (q, x). The string q is either query or final. If q = query, it means that
A wants to query fs(x) and continue. If q = final, it means that A is done and returning
a bit x as a final output.

We recall that a function Adv(s) is negligible is for all c > 0, we have Adv(s) = O(s−c)
when s→ +∞.

In this exercise, we consider another notion defined by the following game:

Game Γ prePRF
b (A):

1: pick s ∈ K at random
2: set ρ to a long enough sequence of random coins
3: set i = 1 and unset flag
4: (q, xi)← A(; ρ)
5: while q ̸= final do



6: if xi ∈ {x1, . . . , xi−1} then
7: abort {it is not allowed to repeat a query}
8: end if
9: if q = challenge and flag is set then

10: abort {it is not allowed to make two challenges}
11: end if
12: if q = challenge then
13: set flag {A is making a challenge}
14: end if
15: if q = challenge and b = 1 then
16: set yi ∈ Y at random
17: else
18: set yi = fs(xi)
19: end if
20: i← i+ 1
21: (q, xi)← A(y1, . . . , yi−1; ρ)
22: end while{we must have q = final}
23: output xi

Essentially, A always plays with f with q = query and at some point uses only once a
special q = challenge. For this “challenge”, the response which is returned to him is fs(x)
if b = 0 or something random if b = 1. An equivalent way consists of saying that Afk(·)

works in two phases, playing with a fk(· · · ) oracle. In between the two phases, it makes a
challenge which is answer by fk(· · · ) or at random.

We define
AdvprePRFA = Pr[Γ prePRF

0 (A) = 1]− Pr[Γ prePRF
1 (A) = 1]

and we say that the function family f is a prePRF if it can be computed in polynomial
time (in terms of s) and if for every PPT algorithm A, AdvprePRFA is negligible.

The objective of this exercise is to show that PRF and prePRF are equivalent security
notions.

Q.1 Given a prePRF adversary A and a bit b, we construct a PRF adversary Bb as fol-
lows:

Bb(y1, . . . , yi−1; ρ):
1: if i = 1 then
2: set seqx and seqy to the empty sequence {first execution of Bb}
3: else
4: set seqy ← (seqy, yi−1) {yi−1 is the answer to the previous query}
5: end if
6: run (q, x) = A(seqy; ρ)
7: if x ∈ seqx then
8: abort {it is not allowed to repeat a query}
9: end if

10: set seqx ← (seqx, x) {insert x in the list of queries}



11: if q = challenge and b = 1 then
12: set y ∈ Y at random
13: set seqy ← (seqy, y)
14: run (q, x) = A(seqy; ρ)
15: if x ∈ seqx then
16: abort {it is not allowed to repeat a query}
17: end if
18: set seqx ← (seqx, x) {insert x in the list of queries}
19: end if
20: output (q, x)

So, B simulates A and simulates the answer to random for the q = challenge and b = 1
case.
Show that

Pr[Γ prePRF
0 (A) = 1] = Pr[ΓPRF

0 (B0) = 1]

Pr[Γ prePRF
1 (A) = 1] = Pr[ΓPRF

0 (B1) = 1]

Pr[Γ PRF
1 (B0) = 1] = Pr[ΓPRF

1 (B1) = 1]

Essentially, Bb simulates A who plays the prePRF game but skips a response to
a challenge set to random. Clearly, the game Γ prePRF

0 (A) is fully simulated by
Γ PRF
0 (B0). Similarly, Γ prePRF

1 (A) is fully simulated by Γ PRF
0 (B1). If we consider

Γ PRF
1 , all answers to queries are random so there is no difference between B0

and B1. Hence, Γ PRF
1 (B0) and Γ PRF

1 (B1) are identical.

Q.2 Show that if f is a PRF, then f is a prePRF.

Let A be a prePRF adversary. We construct and adversary Bb as in the previous
question. We have

AdvprePRFA = Pr[Γ prePRF
0 (A) = 1]− Pr[Γ prePRF

1 (A) = 1]

= Pr[Γ PRF
0 (B0) = 1]− Pr[Γ PRF

0 (B1) = 1]

= Pr[Γ PRF
0 (B0) = 1]− Pr[Γ PRF

1 (B0) = 1] +

Pr[Γ PRF
1 (B1) = 1]− Pr[Γ PRF

0 (B1) = 1]

= AdvPRFB0
− AdvPRFB1

Since f is a PRF, both AdvPRFB0
and AdvPRFB1

are negligible. So, AdvprePRFA is
negligible. As this holds for any PPT adversary A, f is a prePRF.

Q.3 We define the following game:

Game Γ j(A):
1: pick s ∈ K at random



2: set ρ to a long enough sequence of random coins
3: set i = 1
4: (q, xi)← A(; ρ)
5: while q ̸= final do
6: if xi ∈ {x1, . . . , xi−1} then
7: abort {it is not allowed to repeat a query}
8: end if
9: if i ≤ j then

10: set yi = fs(xi) {answer using fs to the j first queries}
11: else
12: set yi ∈ Y at random
13: end if
14: i← i+ 1
15: (q, xi)← A(y1, . . . , yi−1; ρ)
16: end while{we must have q = final}
17: output xi

Show that for a PPT adversary A, there exists some polynomially bounded Q such that
we have

Pr[ΓQ(A) = 1] = Pr[Γ PRF
0 (A) = 1]

Pr[Γ 0(A) = 1] = Pr[Γ PRF
1 (A) = 1]

For j = 0, the Γ 0 game always answers to queries at random, so just like the
Γ PRF
1 game. If we set Q to at least the total number of queries by A, which must

be polynomially bounded, the ΓQ game always answers to queries by setting
yi ∈ Y at random, so just like the Γ PRF

0 game.

Q.4 Given a PPT adversary A and an integer j, we construct an adversary Bj as fol-
lows:

Bj(y1, . . . , yi−1; ρ):
1: run (q, xi) = A(y1, . . . , yi−1; ρ)
2: if i = j then
3: set q to challenge
4: end if
5: if i > j then
6: while q ̸= final and xi ̸∈ {x1, . . . , xi−1} do
7: set yi ∈ Y at random
8: i← i+ 1
9: run (q, xi) = A(y1, . . . , yi−1; ρ)

10: end while
11: end if



12: output (q, xi)

Show that

Pr[Γ j(A) = 1] = Pr[Γ prePRF
0 (Bj) = 1]

Pr[Γ j−1(A) = 1] = Pr[Γ prePRF
1 (Bj) = 1]

This means that Bj will make exactly j − 1 queries which fully simulate the A
queries. The jth one will be given as a challenge in the prePRF game. Then,
B will simulate A who is always answered at random (unless a query repeats
in which case it will repeat as well and let the game abort).
In Γ prePRF

0 , exactly j queries use fs and others use random output, just like in
Γ j. In Γ prePRF

1 , exactly j− 1 queries use fs and others use random output, just
like in Γ j−1.

Q.5 Show that if f is a prePRF, then f is a PRF.

Let A be a PPT adversary playing the PRF game. We construct the Bj adver-
saries. Due to the two previous questions, for Q large enough, we have

AdvPRFA = Pr[ΓPRF
0 (A) = 1]− Pr[Γ PRF

1 (A) = 1]

= Pr[ΓQ(A) = 1]− Pr[Γ 0(A) = 1]

=

Q∑
j=1

Pr[Γ j(A) = 1]− Pr[Γ j−1(A) = 1]

=

Q∑
j=1

Pr[Γ prePRF
0 (Bj) = 1]− Pr[Γ prePRF

1 (Bj) = 1]

=

Q∑
j=1

AdvprePRFBj

If f is a prePRF, then all terms in this sum are negligible. Since the number
Q of terms is polynomially bounded, the sum is also negligible. So, AdvPRFA is
negligible. As this holds for any PPT adversary A, f is a PRF.


