Advanced Cryptography — Final Exam

Serge Vaudenay

22.6.2017

— duration: 3h

— any document allowed

— a pocket calculator is allowed

— communication devices are not allowed

the exam invigilators will not answer any technical question during the exam
readability and style of writing will be part of the grade

1 Breaking AES Reduced to 4 Rounds

In this exercise, we consider a block cipher AES4 which is a reduced version of AES. The
block cipher AES4 takes as input a key K and a plaintext block X and returns a ciphertext
block Y. The key K consists of a sequence of five blocks Ky, K7, ..., Ky. A block (like X,
Y, or the K,) is a 4 x 4 matrix of bytes. (A byte is a bitstring of length 8, i.e. an element
of {0,1}%.) We let K,;; be the byte at position (i,7) in K,, 0 < i,j < 3. The bitwise
exclusive OR of blocks (bitwise, component-wise) is denoted with @. We define AES4 as
follows:
AES4(K, X):

1. S« X P KO

2: for r =1to 4 do

3: S < SubBytes(95)

4: S < ShiftRows(.S)

5. S < MixColumns(.S)

6 S+ S K,

7. end for

8: return S
The V' = SubBytes(U) function is defined by V;; = S(U, ;) for all (¢, ), where S is a
bijective operation on the set of bytes which is defined by a table. The V' = ShiftRows(U)
function is defined by V;; = U, j_imod 4 for all (¢, ). The V = MixColumns(U) function is
defined by V. ; = L(U ;) for all j, where U, ; denotes the vector formed by the j-th column
of U, and L is an invertible linear transform on the set of vectors of four bytes. (It is linear
in the sense of the @ operation.) All these functions are known by the adversary. Only K
is unknown. We want to construct an adversary who will do a key recovery attack with
chosen plaintexts or known plaintexts. We denote N = 256.

Given a block B, let Sp be the set of all blocks X such that X;; = B, ; for all (i, )
such that i + j mod 4 # 0. (So, only Xy, X1,3, X292, X31 change.)
We also define the set Z of all blocks X such that X,; = 0 for all (4, j) such that

(i,7) # (0,0).



Q.1

Q.4

Q.5

Q.6

Given B, we pick X, X’ € Sp at random. We denote by Z, resp. Z. the state of
encryption after round 7. Le., Zy = X & Ky, Z) = X' & Ky, and

Z, = MixColumns(ShiftRows(SubBytes(Z,_1))) & K,
Z) = MixColumns(ShiftRows(SubBytes(Z,_,))) & K,

for r =1,...,4. What is the probability that Z; & Z; € Z7 We let E denote this event
in what follows.

If E occurs, what does Z, @ Z look like?

The set of column vectors is a vector space of dimension 32 when considered over Z,, and
dimension 4, when considered over GF(N). Define four linear subspaces £; of dimension
8 (over Zs), or 1 (over GF(N)) such that if E' occurs, then Z3 _; © Z3 ; € L; for all j.
Give an algorithm which recovers a set of about N* possible values in which K4 belongs
to with probability 1/N?3, with a time complexity equivalent to N* encryptions, and
two chosen plaintexts. Explain why the attack works and justify the complexity.
HINT: recover ShiftRows ' (MicColumns™'(K})) by chunks of four bytes.

Deduce an attack to recover K, with good probability, using as little complexity as
possible.

CHALLENGE: obtain an attack using v/2N 2 chosen plaintexts, time complexity O(N*),
and memory complexity O(N?).

Design an attack to recover K4 with good probability, using /2N ? known plaintexts,
time complexity O(N®), and memory complexity O(N?).



2 ZKPoK from Sigma

We consider a relation R(z,w) defining a language for which we have a X' protocol (P, V')
over a challenge set {0,1}" with accepting predicate V(z,a, e, z), X-simulator S, and X-
extractor E. We define a relation R'((x,a), (e, z)) to hold on instance (z,a) with witness
(e,z) if V(x,a,e,z) is accepting. We assume that R’ also has a X' protocol (P, V') over
the same challenge set {0,1}" with accepting predicate V'(z,a,d’, ¢, 2"), Y-simulator S’
and Y-extractor E’. We consider the following protocol:

Prover Verifier
w T

pick e €v {0,1}, (a, e, 2) < S(z,¢)
ple PV, a Pl((mya)7 (e,z);pv)

pick ¢’ €y {0, 1} £

unless V'(z,a,a’,¢e’,2'), abort

pick ez €y {07 1}t7 (a;%eQ:Z;’) — S/((ZE,CL),GQ)

2 Pl((.La), (6, Z)7€/§pv)

!
. ap,ap
pick pp, ap < P(x,w;pp)
€ .
v pick ey €y {0,1}*
e1 < ey @ ez
’
Zp,Zp,€e2
zp < P(z,w,e1;pp) e1 < ey De

V(z,ap,e1,zp) NV'(z,a,dp,e2,2p)

Q.1 In the first part of the protocol, recognize and isolate a commitment on the value e
and a proof of knowledge of a valid opening of this commitment. Fully describe the
commitment scheme. Fully describe the proof of knowledge.

Q.2 In the second part of the protocol, recognize a proof of knowledge of either w for
(R(z,w) or (e, z) for R'((z,a), (e, 2)).

Q.3 Show that the protocol is complete and runs in polynomial time poly(¢, |z|) (where |z|
is the length of x) for the verifier.

Q.4 Show that the protocol is zero-knowledge by constructing a black-box simulator.

Q.5 Construct a knowledge extractor for this protocol to prove that it is a zero-knowledge
proof of knowledge for R.



3 PRP versus Left-or-Right

Given a security parameter (which is implicit and omitted from notations for better read-
ability), we consider a pair (Enc, Dec) of functions from {0, 1}* x {0,1}" to {0,1}" (k and
n are functions of the security parameter). These functions are such that for all K and X,
we have

Dec(K,Enc(K, X)) =X

It is assumed that there are implementations which can evaluate both functions in poly-
nomial time complexity (in terms of the security parameter). We define several security
notions.

PRP. We say that this pair is a pseudorandom permutation (PRP) if there exists a negli-
gible function negl such that for all probabilistic polynomial time (PPT) algorithm A,
we have Pr[I"PRP(A,0) — 1] —Pr[I"PRP(A, 1) — 1] < negl, where I'"RP(A, b) is the PRP
game defined as follows:

T'PRP(AD):
1: initialize a list £ to empty
2: pick K € {0,1}* uniformly at random
3: pick a permutation IT over {0, 1}" uniformly at random
4 run b« A°
5. return O
subroutine O(x):
6: if x € L abort
7: insert x in £
8: if b =0 then
9:  return Enc(K, x)
10: else
11:  return [1(z)
12: end if

LoR. We say that this pair is LoR-secure if there exists a negligible function negl such
that for all probabilistic polynomial time (PPT) algorithm A, we have Pr[I"°R(A, 0) —
1] — Pr[I™°R(A,1) — 1] < negl, where I'"°R(A,b) is the left-or-right game defined as
follows:

TR(A,b):
1: initialize two lists £; and L, to empty
2: pick K € {0, 1}* uniformly at random
3. run b’ A°
4: return b’
subroutine O(x;, x,):
5. if x; € Ly or x, € L,., abort
6: insert x; in £; and x, in L,
7. if b =0 then
8:  return Enc(K, ;)



9: else
10:  return Enc(K, z,)
11: end if

We want to show the equivalence between these notions.

Q.1
Q.2

Q.3

Q.4
Q.5

Is the list management important in each security definition (or: what happens with
modified definitions in which we remove the lists)? Justify your answer.
We consider the following hybrid game:
I'e(ALb):
1: initialize a list £ to empty
2: pick K € {0, 1}* uniformly at random
3: pick a permutation II over {0, 1}" uniformly at random
4 run b« A°
5. return b
subroutine O(x):
6: if z € L abort
7: insert x in £
8: if b = 0 then
9:  return Enc(K, x)
10: else
11:  return Enc(K, I1(x))
12: end if

Show that for all A playing the PRP game and any b, we have Pr[IPRP(A,b) — 1] =
Pr[I'™P(A,b) — 1].
Given A playing the PRP game, we define B playing the LoR game as follows:
BC:

1: pick a permutation I7 over {0, 1}" uniformly at random

2: Tun A

when A makes a query x to its oracle, answer by O(x, I1(x))

3: return the same output as A
Show that Pr[I"™P(A,b) — 1] = Pr[I"°R(B,b) — 1] for any b.
Deduce that LoR-security implies PRP.
CAUTION: adversaries must be PPT.
Using the following game, show that PRP security implies LoR security. Give a precise
proof with the reductions.
Fgeneric(A’ b’ C)I

1: initialize two lists £; and L, to empty

2: pick K € {0, 1}* uniformly at random

3: pick a permutation IT over {0, 1}" uniformly at random

4 run b « A°

5. return O
subroutine O(x, x,.):



11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

if x; € L, or x, € L,, abort
insert x; in £; and z, in L,
if b =0 then
if ¢ =0 then
return Enc(K, x;)
else
return I1(x;)
end if
else
if ¢ =0 then
return Enc(K, z,)
else
return [1(x,)
end if
end if



