
Advanced Cryptography — Final Exam

Serge Vaudenay

22.6.2017

– duration: 3h
– any document allowed
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade

1 Breaking AES Reduced to 4 Rounds

In this exercise, we consider a block cipher AES4 which is a reduced version of AES. The
block cipher AES4 takes as input a key K and a plaintext block X and returns a ciphertext
block Y . The key K consists of a sequence of five blocks K0, K1, . . . , K4. A block (like X,
Y , or the Kr) is a 4× 4 matrix of bytes. (A byte is a bitstring of length 8, i.e. an element
of {0, 1}8.) We let Kr,i,j be the byte at position (i, j) in Kr, 0 ≤ i, j ≤ 3. The bitwise
exclusive OR of blocks (bitwise, component-wise) is denoted with ⊕. We define AES4 as
follows:

AES4(K,X):
1: S ← X ⊕K0

2: for r = 1 to 4 do
3: S ← SubBytes(S)
4: S ← ShiftRows(S)
5: S ← MixColumns(S)
6: S ← S ⊕Kr

7: end for
8: return S

The V = SubBytes(U) function is defined by Vi,j = S(Ui,j) for all (i, j), where S is a
bijective operation on the set of bytes which is defined by a table. The V = ShiftRows(U)
function is defined by Vi,j = Ui,j−i mod 4 for all (i, j). The V = MixColumns(U) function is
defined by V.,j = L(U.,j) for all j, where U.,j denotes the vector formed by the j-th column
of U , and L is an invertible linear transform on the set of vectors of four bytes. (It is linear
in the sense of the ⊕ operation.) All these functions are known by the adversary. Only K
is unknown. We want to construct an adversary who will do a key recovery attack with
chosen plaintexts or known plaintexts. We denote N = 256.

Given a block B, let SB be the set of all blocks X such that Xi,j = Bi,j for all (i, j)
such that i+ j mod 4 ̸= 0. (So, only X0,0, X1,3, X2,2, X3,1 change.)

We also define the set Z of all blocks X such that Xi,j = 0 for all (i, j) such that
(i, j) ̸= (0, 0).

Q.1 Given B, we pick X,X ′ ∈ SB at random. We denote by Zr resp. Z ′
r the state of

encryption after round r. I.e., Z0 = X ⊕K0, Z
′
0 = X ′ ⊕K0, and

Zr =MixColumns(ShiftRows(SubBytes(Zr−1)))⊕Kr

Z ′
r =MixColumns(ShiftRows(SubBytes(Z ′

r−1)))⊕Kr

for r = 1, . . . , 4. What is the probability that Z1⊕Z ′
1 ∈ Z? We let E denote this event

in what follows.
Q.2 If E occurs, what does Z2 ⊕ Z ′

2 look like?
Q.3 The set of column vectors is a vector space of dimension 32 when considered over Z2, and

dimension 4, when considered over GF(N). Define four linear subspaces Lj of dimension
8 (over Z2), or 1 (over GF(N)) such that if E occurs, then Z3,.,j ⊕ Z ′

3,.,j ∈ Lj for all j.
Q.4 Give an algorithm which recovers a set of about N4 possible values in which K4 belongs

to with probability 1/N3, with a time complexity equivalent to N4 encryptions, and
two chosen plaintexts. Explain why the attack works and justify the complexity.
HINT: recover ShiftRows−1(MicColumns−1(K4)) by chunks of four bytes.

Q.5 Deduce an attack to recover K4 with good probability, using as little complexity as
possible.
CHALLENGE: obtain an attack using

√
2N

3
2 chosen plaintexts, time complexityO(N4),

and memory complexity O(N4).

Q.6 Design an attack to recover K4 with good probability, using
√
2N

15
2 known plaintexts,

time complexity O(N8), and memory complexity O(N4).

2 ZKPoK from Sigma

We consider a relation R(x,w) defining a language for which we have a Σ protocol (P, V)
over a challenge set {0, 1}t with accepting predicate V (x, a, e, z), Σ-simulator S, and Σ-
extractor E. We define a relation R′((x, a), (e, z)) to hold on instance (x, a) with witness
(e, z) if V (x, a, e, z) is accepting. We assume that R′ also has a Σ protocol (P ′, V ′) over
the same challenge set {0, 1}t with accepting predicate V ′(x, a, a′, e′, z′), Σ-simulator S ′,
and Σ-extractor E ′. We consider the following protocol:

Prover Verifier
w x

pick e ∈U {0, 1}t, (a, e, z)← S(x, e)
a,a′

←−−−−−−−−−−−−−−−− pick ρV , a′ ← P ′((x, a), (e, z); ρV)

pick e′ ∈U {0, 1}t
e′−−−−−−−−−−−−−−−−→

unless V ′(x, a, a′, e′, z′), abort
z′←−−−−−−−−−−−−−−−− z′ ← P ′((x, a), (e, z), e′; ρV)

pick e2 ∈U {0, 1}t, (a′
P , e2, z

′
P)← S′((x, a), e2)

pick ρP , aP ← P (x,w; ρP)
aP ,a′

P−−−−−−−−−−−−−−−−→
eV←−−−−−−−−−−−−−−−− pick eV ∈U {0, 1}t

e1 ← eV ⊕ e2

zP ← P (x,w, e1; ρP)
zP ,z′P ,e2−−−−−−−−−−−−−−−−→ e1 ← eV ⊕ e2

V (x, aP , e1, zP) ∧ V ′(x, a, a′
P , e2, z

′
P)

Q.1 In the first part of the protocol, recognize and isolate a commitment on the value e
and a proof of knowledge of a valid opening of this commitment. Fully describe the
commitment scheme. Fully describe the proof of knowledge.

Q.2 In the second part of the protocol, recognize a proof of knowledge of either w for
(R(x,w) or (e, z) for R′((x, a), (e, z)).

Q.3 Show that the protocol is complete and runs in polynomial time poly(t, |x|) (where |x|
is the length of x) for the verifier.

Q.4 Show that the protocol is zero-knowledge by constructing a black-box simulator.
Q.5 Construct a knowledge extractor for this protocol to prove that it is a zero-knowledge

proof of knowledge for R.

3 PRP versus Left-or-Right

Given a security parameter (which is implicit and omitted from notations for better read-
ability), we consider a pair (Enc,Dec) of functions from {0, 1}k × {0, 1}n to {0, 1}n (k and
n are functions of the security parameter). These functions are such that for all K and X,
we have

Dec(K,Enc(K,X)) = X

It is assumed that there are implementations which can evaluate both functions in poly-
nomial time complexity (in terms of the security parameter). We define several security
notions.

PRP. We say that this pair is a pseudorandom permutation (PRP) if there exists a negli-
gible function negl such that for all probabilistic polynomial time (PPT) algorithm A,
we have Pr[Γ PRP(A, 0)→ 1]−Pr[Γ PRP(A, 1)→ 1] ≤ negl, where ΓPRP(A, b) is the PRP
game defined as follows:

ΓPRP(A, b):
1: initialize a list L to empty
2: pick K ∈ {0, 1}k uniformly at random
3: pick a permutation Π over {0, 1}n uniformly at random
4: run b′ ← AO

5: return b′

subroutine O(x):
6: if x ∈ L abort
7: insert x in L
8: if b = 0 then
9: return Enc(K, x)

10: else
11: return Π(x)
12: end if

LoR. We say that this pair is LoR-secure if there exists a negligible function negl such
that for all probabilistic polynomial time (PPT) algorithm A, we have Pr[Γ LoR(A, 0)→
1] − Pr[Γ LoR(A, 1) → 1] ≤ negl, where Γ LoR(A, b) is the left-or-right game defined as
follows:

Γ LoR(A, b):
1: initialize two lists Ll and Lr to empty
2: pick K ∈ {0, 1}k uniformly at random
3: run b′ ← AO

4: return b′

subroutine O(xl, xr):
5: if xl ∈ Ll or xr ∈ Lr, abort
6: insert xl in Ll and xr in Lr

7: if b = 0 then
8: return Enc(K, xl)

9: else
10: return Enc(K, xr)
11: end if

We want to show the equivalence between these notions.

Q.1 Is the list management important in each security definition (or: what happens with
modified definitions in which we remove the lists)? Justify your answer.

Q.2 We consider the following hybrid game:

Γ hyb(A, b):
1: initialize a list L to empty
2: pick K ∈ {0, 1}k uniformly at random
3: pick a permutation Π over {0, 1}n uniformly at random
4: run b′ ← AO

5: return b′

subroutine O(x):
6: if x ∈ L abort
7: insert x in L
8: if b = 0 then
9: return Enc(K, x)

10: else
11: return Enc(K,Π(x))
12: end if

Show that for all A playing the PRP game and any b, we have Pr[Γ PRP(A, b) → 1] =
Pr[Γ hyb(A, b)→ 1].

Q.3 GivenA playing the PRP game, we define B playing the LoR game as follows:

BO:
1: pick a permutation Π over {0, 1}n uniformly at random
2: run A

when A makes a query x to its oracle, answer by O(x,Π(x))
3: return the same output as A

Show that Pr[Γ hyb(A, b)→ 1] = Pr[Γ LoR(B, b)→ 1] for any b.
Q.4 Deduce that LoR-security implies PRP.

CAUTION: adversaries must be PPT.
Q.5 Using the following game, show that PRP security implies LoR security. Give a precise

proof with the reductions.

Γ generic(A, b, c):
1: initialize two lists Ll and Lr to empty
2: pick K ∈ {0, 1}k uniformly at random
3: pick a permutation Π over {0, 1}n uniformly at random
4: run b′ ← AO

5: return b′

subroutine O(xl, xr):

6: if xl ∈ Ll or xr ∈ Lr, abort
7: insert xl in Ll and xr in Lr

8: if b = 0 then
9: if c = 0 then

10: return Enc(K, xl)
11: else
12: return Π(xl)
13: end if
14: else
15: if c = 0 then
16: return Enc(K, xr)
17: else
18: return Π(xr)
19: end if
20: end if

