
Advanced Cryptography — Final Exam

Solution

Serge Vaudenay

22.6.2017

– duration: 3h
– any document allowed
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade

The exam grade follows a linear scale in which each question has the same weight.

1 Breaking AES Reduced to 4 Rounds

In this exercise, we consider a block cipher AES4 which is a reduced version of AES. The
block cipher AES4 takes as input a key K and a plaintext block X and returns a ciphertext
block Y . The key K consists of a sequence of five blocks K0, K1, . . . , K4. A block (like X,
Y , or the Kr) is a 4× 4 matrix of bytes. (A byte is a bitstring of length 8, i.e. an element
of {0, 1}8.) We let Kr,i,j be the byte at position (i, j) in Kr, 0 ≤ i, j ≤ 3. The bitwise
exclusive OR of blocks (bitwise, component-wise) is denoted with ⊕. We define AES4 as
follows:

AES4(K,X):
1: S ← X ⊕K0

2: for r = 1 to 4 do
3: S ← SubBytes(S)
4: S ← ShiftRows(S)
5: S ← MixColumns(S)
6: S ← S ⊕Kr

7: end for
8: return S

The V = SubBytes(U) function is defined by Vi,j = S(Ui,j) for all (i, j), where S is a
bijective operation on the set of bytes which is defined by a table. The V = ShiftRows(U)
function is defined by Vi,j = Ui,j−i mod 4 for all (i, j). The V = MixColumns(U) function is
defined by V.,j = L(U.,j) for all j, where U.,j denotes the vector formed by the j-th column
of U , and L is an invertible linear transform on the set of vectors of four bytes. (It is linear
in the sense of the ⊕ operation.) All these functions are known by the adversary. Only K
is unknown. We want to construct an adversary who will do a key recovery attack with
chosen plaintexts or known plaintexts. We denote N = 256.



Given a block B, let SB be the set of all blocks X such that Xi,j = Bi,j for all (i, j)
such that i+ j mod 4 ̸= 0. (So, only X0,0, X1,3, X2,2, X3,1 change.)

We also define the set Z of all blocks X such that Xi,j = 0 for all (i, j) such that
(i, j) ̸= (0, 0).

Q.1 Given B, we pick X,X ′ ∈ SB at random. We denote by Zr resp. Z ′
r the state of

encryption after round r. I.e., Z0 = X ⊕K0, Z
′
0 = X ′ ⊕K0, and

Zr =MixColumns(ShiftRows(SubBytes(Zr−1)))⊕Kr

Z ′
r =MixColumns(ShiftRows(SubBytes(Z ′

r−1)))⊕Kr

for r = 1, . . . , 4. What is the probability that Z1⊕Z ′
1 ∈ Z? We let E denote this event

in what follows.

We look at the propagation of the differences between X and X ′. At the be-
ginning, differences can only occur in positions such that i + j mod 4 = 0.
After the XOR to K0, this is the same. After SubBytes, this is the same. Af-
ter ShiftRows, difference can only occur in positions such that j = 0. After
MixColumns, differences in positions (i, 0) for i > 0 are zero with probability
1/N3 because L is invertible. This remains so after the XOR with K1. So, the
probability is 1/N3.

Q.2 If E occurs, what does Z2 ⊕ Z ′
2 look like?

We continue to look at the propagation of the difference in Z1,0,0. After
SubBytes, the difference can only be at position (0, 0). After ShiftRows, this
is the same. After MixColumns, differences are only in column 0. This remains
so after the XOR with K2.

Q.3 The set of column vectors is a vector space of dimension 32 when considered over Z2, and
dimension 4, when considered over GF(N). Define four linear subspaces Lj of dimension
8 (over Z2), or 1 (over GF(N)) such that if E occurs, then Z3,.,j ⊕ Z ′

3,.,j ∈ Lj for all j.

We continue to look at the propagation of the difference in Z2,.,0. After
SubBytes, the difference can only be at position (., 0). After ShiftRows, the dif-
ference can only be at position (i, j) such that i = j. Clearly, Z3,.,j⊕Z ′

3,.,j is the
result of L on the difference at columns j. For j = 0, this is L0 = L(∗, 0, 0, 0).
For j = 1, this is L1 = L(0, ∗, 0, 0). For j = 2, this is L2 = L(0, 0, ∗, 0). For
j = 3, this is L3 = L(0, 0, 0, ∗).

Q.4 Give an algorithm which recovers a set of about N4 possible values in which K4 belongs
to with probability 1/N3, with a time complexity equivalent to N4 encryptions, and
two chosen plaintexts. Explain why the attack works and justify the complexity.
HINT: recover ShiftRows−1(MicColumns−1(K4)) by chunks of four bytes.



We let K̄ = ShiftRows−1(MicColumns−1(K4)). We note that the last three steps
of encryption are equivalent to

1: S ← S ⊕ K̄
2: S ← ShiftRows(S)
3: S ← MixColumns(S)

However, given the ciphertext Y , we can invert the last two steps and get
Ȳ = SubBytes(Z3)⊕ K̄ and Ȳ ′ = SubBytes(Z ′

3)⊕ K̄.
The algorithm works as follows:

1: pick X,X ′ ∈ SB at random
2: get Y = Enc(X) and Y ′ = Enc(X ′) by chosen plaintext queries
3: compute Ȳ and Ȳ ′ by inverting MixColumns and ShiftRows on Y and Y ′

4: for j = 0 to 3 do
5: for each possible K̄.,j do
6: if SubBytes−1(Ȳ.,j ⊕ K̄.,j) ⊕ SubBytes−1(Ȳ ′

.,j ⊕ K̄.,j) ∈ Lj, keep this
possible value for K̄.,j

7: end for
8: end for

The good value for K̄.,j will be kept for sure if E occurs. There are N4 possible
values. Whether E occur or not, a wrong value will be kept with probability
1/N3, due to the dimension. So, we expect to keep N values in total. This is
the case for each chunk of four bytes. Hence, we expect to collect N4 possible
values for K̄ in total. This list contains the right K̄ for sure when E occurs.

Q.5 Deduce an attack to recover K4 with good probability, using as little complexity as
possible.

CHALLENGE: obtain an attack using
√
2N

3
2 chosen plaintexts, time complexityO(N4),

and memory complexity O(N4).



We consider the following algorithm using q chosen plain-
texts

1: choose B arbitrarily
2: pick X1, . . . , Xq ∈ SB at random
3: get Yi = Enc(Xi) chosen plaintext queries, i = 1, . . . , q
4: initialize 4N4 counters cj,V to 0
5: for each 1 ≤ i < j ≤ q do
6: get Y = Yi and Y ′ = Yj

7: compute Ȳ and Ȳ ′ by inverting MixColumns and ShiftRows on Y and Y ′

8: for j = 0 to 3 do
9: for i = 0 to 3 do

10: make the inverse table of

fi,j : K̄i,j 7→ SubBytes−1(Ȳi,j ⊕ K̄i,j)⊕ SubBytes−1(Ȳ ′
i,j ⊕ K̄i,j)

11: end for
12: for each v ∈ Lj do
13: for all K̄.,j such that fi,j(K̄i,j) = vi do
14: increment cj,K̄.,j

15: end for
16: end for
17: end for
18: end for
19: for j = 0 to 3 do
20: let K̄.,j be the value with maximal counter cj,K̄.,j

21: end for

The subspace Lj contains N vectors. For each vector, we have on average 1
value of K̄.,j. So, the time complexity is q + O(N4 + q2N) encryptions. The
memory complexity is 4N4 counters.
The algorithm works like iterating n =

(
q
2

)
times the previous attack. For each

j, it gives a list of N possible values for K̄.,j. So, the counter of each possible
value increments with probability 1/N3 when E does not occur. The counter
of the right value always increments when E occurs, which is with probability
1/N3. So, it increments with probability roughly 2/N3. The expected value of
the counters are 2n/N3 for the right one and n/N3 for the wrong one. The
standard deviation is roughly

√
n/N3. So, for 2n/N3−n/N3 ≥

√
n/N3, which

is equivalent to n ≥ N3, we isolate the right value with good probability. Hence,
we just take n = N3 so q =

√
2N

3
2 . The complexity becomes O(N4).

Q.6 Design an attack to recover K4 with good probability, using
√
2N

15
2 known plaintexts,

time complexity O(N8), and memory complexity O(N4).



Given
√
2N

15
2 random known plaintexts, we can form about N15 pairs. Each

pair will belong to the same SB structure with probability 1/N12. Hence, we
can get about N3 pairs in the same structure. Forming these pairs takes a
complexity which consists of sorting the data, so less than N8. Once this is
done, we can apply the previous attack which has a lower complexity and obtain
K4.



2 ZKPoK from Sigma

This exercise is inspired from Cramer-Damg̊ard-MacKenzie, Efficient Zero-
Knowledge Proofs of Knowledge Without Intractability Assumptions,
PKC 2000, LNCS vol. 1751, Springer.

We consider a relation R(x,w) defining a language for which we have a Σ protocol (P, V )
over a challenge set {0, 1}t with accepting predicate V (x, a, e, z), Σ-simulator S, and Σ-
extractor E. We define a relation R′((x, a), (e, z)) to hold on instance (x, a) with witness
(e, z) if V (x, a, e, z) is accepting. We assume that R′ also has a Σ protocol (P ′, V ′) over
the same challenge set {0, 1}t with accepting predicate V ′(x, a, a′, e′, z′), Σ-simulator S ′,
and Σ-extractor E ′. We consider the following protocol:

Prover Verifier
w x

pick e ∈U {0, 1}t, (a, e, z)← S(x, e)
a,a′

←−−−−−−−−−−−−−−−− pick ρV , a′ ← P ′((x, a), (e, z); ρV )

pick e′ ∈U {0, 1}t
e′−−−−−−−−−−−−−−−−→

unless V ′(x, a, a′, e′, z′), abort
z′←−−−−−−−−−−−−−−−− z′ ← P ′((x, a), (e, z), e′; ρV )

pick e2 ∈U {0, 1}t, (a′
P , e2, z

′
P )← S′((x, a), e2)

pick ρP , aP ← P (x,w; ρP )
aP ,a′

P−−−−−−−−−−−−−−−−→
eV←−−−−−−−−−−−−−−−− pick eV ∈U {0, 1}t

e1 ← eV ⊕ e2

zP ← P (x,w, e1; ρP )
zP ,z′P ,e2−−−−−−−−−−−−−−−−→ e1 ← eV ⊕ e2

V (x, aP , e1, zP ) ∧ V ′(x, a, a′
P , e2, z

′
P )

Q.1 In the first part of the protocol, recognize and isolate a commitment on the value e
and a proof of knowledge of a valid opening of this commitment. Fully describe the
commitment scheme. Fully describe the proof of knowledge.

In the first step of the protocol, the verifier commits to some e without revealing
it by using the conversion from a Σ-protocol to a commitment scheme. For
that, he runs S with challenge e and sends the commit value a. He proves in
a Σ protocol that he knows a valid (e, z), so that he knows how to open the
commitment.
The commitment scheme was seen in the course. To commit on e, the sender
runs S(x, e)→ (a, e, z) and uses a as a commit value and (e, z) as the opening
value. To open a commitment a with (e, z), we just check V (x, a, e, z), i.e. the
relation R′((x, a), (e, z)). Hence, the (P ′, V ′) protocol is a proof of knowledge
of a valid opening of the commitment a.

Q.2 In the second part of the protocol, recognize a proof of knowledge of either w for
(R(x,w) or (e, z) for R′((x, a), (e, z)).



The second part of the protocol is a standard OR proof for R and R′. The
prover proves that he knows either w for R or (e, z) for R′. He can as he
actually knows w. The OR proof runs in parallel the Σ protocols for R and
R′ but the challenges are chosen by the prover with a XOR eV imposed by the
verifier. If we know one of the two witnesses, we can run the corresponding Σ
protocol with any challenge. If we do not, we can anticipate the challenge and
use the simulator of the corresponding Σ protocol. If we know one of the two
challenges, we anticipate a random challenge for the ignored witness and we
select the challenge for the known witness with the correct XOR.
This OR proof was the subject of a previous exam.

Q.3 Show that the protocol is complete and runs in polynomial time poly(t, |x|) (where |x|
is the length of x) for the verifier.

All protocols run by the verifier are PPT algorithm. So, the protocol runs in
polynomial time for the verifier.
The first part of the protocol is complete thanks to the second Σ protocol. It is
a proof that the verifier knows (e, z), a valid opening of the commitment.
The second part of the proof is an OR-proof. It completes thanks to the simu-
lator S ′ and the completeness of the Σ protocol for R.

Q.4 Show that the protocol is zero-knowledge by constructing a black-box simulator.

In the first part of the protocol, we simulate a prover normally to the verifier.
Then, we rewind the verifier and run the simulation again. As it is likely to
produce a different challenge e′, we can use the extractor E ′ to extract a valid
(ē, z̄) witness for R′. Then, we can simulate a prover who knows (ē, z̄) in the
OR proof: we pick e1, run (aP , e1, zP )← S(x, e1), a

′
P ← P ′(x, a, ē, z̄; ρP ), send

(aP , a
′
P ), get eV , set e2 = eV ⊕ e1, run z′P ← P ′(x, a, ē, z̄, ee; ρP ), and send

(zP , z
′
P , e2). We can easily see that the distribution is correct.

Q.5 Construct a knowledge extractor for this protocol to prove that it is a zero-knowledge
proof of knowledge for R.



The extractor runs the prover twice with the same random coins and simulate
the verifier the same way in both executions, except for issuing eV where they
may fork. Like in the proof which was seen in the course, we obtain two execu-
tions with the same transcript until eV then two transcripts e1V , z

1
P , z

′1
P , e

1
2 and

e2V , z
2
P , z

′2
P , e

2
2. We assume e1V ̸= e2V .

Let ei1 = eiV ⊕ ei2. If e
1
1 ̸= e21, we have two transcripts aP , e

1
1, z

1
P and aP , e

2
1, z

2
P

with different challenges so E extracts a witness w for R.
If now e11 = e21, we must have e12 ̸= e22, so we get two transcripts a′P , e

1
2, z

′1
P and

a′P , e
2
2, z

′2
P with different challenges so E ′ extracts a witness (ē, z̄) for R′. Since

the extractor simulated the verifier, he already has some witness (e, z) for R′.
If e ̸= ē, we can use E again to obtain a witness w for R.
What remains to show is that e = ē occurs with probability 2−t. This is due
to the extractor revealing no information about e to the prover so that ē and e
are statistically independent. As e is uniformly distributed, this concludes the
proof.



3 PRP versus Left-or-Right

WARNING: in this exercise, the definitions which are proposed are not correct.
Instead of saying there is a negligible function which major the advantage of
any adversary, we should have said any adversary has a negligible advantage.

Given a security parameter (which is implicit and omitted from notations for better read-
ability), we consider a pair (Enc,Dec) of functions from {0, 1}k × {0, 1}n to {0, 1}n (k and
n are functions of the security parameter). These functions are such that for all K and X,
we have

Dec(K,Enc(K,X)) = X

It is assumed that there are implementations which can evaluate both functions in poly-
nomial time complexity (in terms of the security parameter). We define several security
notions.

PRP. We say that this pair is a pseudorandom permutation (PRP) if there exists a negli-
gible function negl such that for all probabilistic polynomial time (PPT) algorithm A,
we have Pr[Γ PRP(A, 0)→ 1]−Pr[Γ PRP(A, 1)→ 1] ≤ negl, where ΓPRP(A, b) is the PRP
game defined as follows:

ΓPRP(A, b):
1: initialize a list L to empty
2: pick K ∈ {0, 1}k uniformly at random
3: pick a permutation Π over {0, 1}n uniformly at random
4: run b′ ← AO

5: return b′

subroutine O(x):
6: if x ∈ L abort
7: insert x in L
8: if b = 0 then
9: return Enc(K, x)

10: else
11: return Π(x)
12: end if

LoR. We say that this pair is LoR-secure if there exists a negligible function negl such
that for all probabilistic polynomial time (PPT) algorithm A, we have Pr[Γ LoR(A, 0)→
1] − Pr[Γ LoR(A, 1) → 1] ≤ negl, where Γ LoR(A, b) is the left-or-right game defined as
follows:

Γ LoR(A, b):
1: initialize two lists Ll and Lr to empty
2: pick K ∈ {0, 1}k uniformly at random
3: run b′ ← AO

4: return b′



subroutine O(xl, xr):
5: if xl ∈ Ll or xr ∈ Lr, abort
6: insert xl in Ll and xr in Lr

7: if b = 0 then
8: return Enc(K, xl)
9: else

10: return Enc(K, xr)
11: end if

We want to show the equivalence between these notions.

Q.1 Is the list management important in each security definition (or: what happens with
modified definitions in which we remove the lists)? Justify your answer.

We consider the games Γ PRP∗ and Γ LoR∗ which are the same as Γ PRP and Γ LoR,
respectively, without any list management or abort.
The list management is not important in the PRP security. Indeed, we could
simulate a PRP∗ adversary A repeating queries by a PRP adversary B who does
not repeat them, by simulating A, remembering his queries and the responses,
and simulating repeating queries instead of querying them. We would have
Pr[Γ PRP∗(A, b)→ 1] = Pr[Γ PRP(B, b)→ 1].
The list management is important in the LoR security. Indeed, the following
adversary outputs b with probability 1 in a LoR∗ game in which repetitions are
allowed:

AO:
1: pick x, y ∈ {0, 1}n such that x ̸= y
2: query u = O(x, y)
3: query v = O(y, y)
4: answer 1u=v

So, Pr[Γ LoR∗(A, 0)→ 1]− Pr[Γ LoR∗(A, 1)→ 1] = 1. This is not negligible. So,
no LoR∗ security is feasible. Nevertheless, we will see that LoR and PRP are
equivalent.

Q.2 We consider the following hybrid game:

Γ hyb(A, b):
1: initialize a list L to empty
2: pick K ∈ {0, 1}k uniformly at random
3: pick a permutation Π over {0, 1}n uniformly at random
4: run b′ ← AO

5: return b′

subroutine O(x):
6: if x ∈ L abort
7: insert x in L
8: if b = 0 then



9: return Enc(K, x)
10: else
11: return Enc(K,Π(x))
12: end if

Show that for all A playing the PRP game and any b, we have Pr[Γ PRP(A, b) → 1] =
Pr[Γ hyb(A, b)→ 1].

For b = 0, the result is obvious: by getting rid of steps which are never executed,
we can see that the two games are the same. So, we concentrate on b = 1.
If K is random and Π is an independent uniformly distributed permutation,
then Π ′(x) = Enc(K,Π(x)) is also an independent uniformly distributed per-
mutation. So, a bridging step in which we replace Enc(K,Π(x)) by Π ′(x) with
Π ′ selected randomly produces the same result.

Q.3 GivenA playing the PRP game, we define B playing the LoR game as follows:

BO:
1: pick a permutation Π over {0, 1}n uniformly at random
2: run A

when A makes a query x to its oracle, answer by O(x,Π(x))
3: return the same output as A

Show that Pr[Γ hyb(A, b)→ 1] = Pr[Γ LoR(B, b)→ 1] for any b.

First of all, it is clear that some x repeats if and only if some Π(x) repeats,
because Π is a permutation. So, removing the Lr management in the LoR game
with B does not change the outcome of the game. Then, the LoR game without
Lr management can be changed into the hybrid game by bridging steps. So,
Pr[Γ hyb(A, b)→ 1] = Pr[Γ LoR(B, b)→ 1].

Q.4 Deduce that LoR-security implies PRP.
CAUTION: adversaries must be PPT.

The adversary B in the previous question is not polynomially bounded as it
must pick a random Π. However, we can perfectly simulate it by using the
lazy sampling technique: B′ keeps a table of (x,Π(x)) pairs which is initially
empty and, upon a new query x, checks if it is in the table, and if not, picks
a random output y which is different than all previous ones, then insert (x, y)
in the table.
If we have LoR security, given a (PPT) PRP adversary A, the previous re-
duction makes a PPT adversary B′ playing the LoR game and such that
Pr[Γ PRP(A, b) → 1] = Pr[Γ LoR(B′, b) → 1] for any b. Since Pr[Γ LoR(B′, 0) →
1]−Pr[Γ LoR(B′, 1)→ 1] ≤ negl, we have Pr[Γ PRP(A, 0)→ 1]−Pr[Γ PRP(A, 1)→
1] ≤ negl. Since this holds for any PPT A, we obtain PRP security.



Q.5 Using the following game, show that PRP security implies LoR security. Give a precise
proof with the reductions.

Γ generic(A, b, c):
1: initialize two lists Ll and Lr to empty
2: pick K ∈ {0, 1}k uniformly at random
3: pick a permutation Π over {0, 1}n uniformly at random
4: run b′ ← AO

5: return b′

subroutine O(xl, xr):
6: if xl ∈ Ll or xr ∈ Lr, abort
7: insert xl in Ll and xr in Lr

8: if b = 0 then
9: if c = 0 then

10: return Enc(K, xl)
11: else
12: return Π(xl)
13: end if
14: else
15: if c = 0 then
16: return Enc(K, xr)
17: else
18: return Π(xr)
19: end if
20: end if



Let A be any (PPT) LoR adversary.
We have Pr[Γ LoR(A, b)→ 1] = Pr[Γ generic(A, b, 0)→ 1].
When c = 1, as the queries never repeat, the oracle always returns a random
answer which is different from all previous ones, no matter the value of b. So,
we have Pr[Γ generic(A, 0, 1)→ 1] = Pr[Γ generic(A, 1, 1)→ 1].
Using a bridging step, we construct Bb such that for all b and c,
Pr[Γ PRP(Bb, c) = Pr[Γ generic(A, b, c)→ 1]. So

Pr[Γ LoR(A, 0)→ 1]− Pr[Γ LoR(A, 1)→ 1]

= Pr[Γ generic(A, 0, 0)→ 1]− Pr[Γ generic(A, 1, 0)→ 1]

=
(
Pr[Γ generic(A, 0, 0)→ 1]− Pr[Γ generic(A, 0, 1)→ 1]

)
−(

Pr[Γ generic(A, 1, 0)→ 1]− Pr[Γ generic(A, 1, 1)→ 1]
)

=
(
Pr[Γ PRP(B0, 0)→ 1]− Pr[Γ PRP(B0, 1)→ 1]

)
−(

Pr[Γ PRP(B1, 0)→ 1]− Pr[Γ PRP(B1, 1)→ 1]
)

=
(
Pr[Γ PRP(B0, 0)→ 1]− Pr[Γ PRP(B0, 1)→ 1]

)
+(

Pr[Γ PRP(B′
1, 0)→ 1]− Pr[Γ PRP(B′

1, 1)→ 1]
)

≤ 2negl

where B′
b gives the opposite answer to Bb. As 2negl is a negligible function, this

is negligible. This applies to any A. Hence, we have LoR security.


