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– duration: 3h

– any document allowed

– a pocket calculator is allowed

– communication devices are not allowed

– the exam invigilators will not answer any technical question during the exam

– readability and style of writing will be part of the grade

The exam grade follows a linear scale in which each question has the same weight.

1 DDH Solver in a Group of Order with a Small Factor

We consider a family of cyclic groups Gs generated by some element gs, where s is the
security parameter. The group has order ns which is divisible by some ms > 1. (In the rest
of the exercise, the subscript s is omitted for clarity.) We assume there is a polynomially
bounded (in terms of s) algorithm to implement the multiplication in G. We further assume
that m is polynomially bounded. The purpose of this exercise is to solve the Decisional
Diffie-Hellman (DDH) problem in G.

Q.1 Construct a subgroup H of G with order m.

Let H be the subgroup of all s such that xm = 1. Clearly, H is a subgroup: if
x, y ∈ H, then (xy)m = xmym = 1 so xy ∈ H. Furthermore, 1m = 1 so 1 ∈ H.
Finally, (x−1)m = (xm)−1 = 1 so x−1 ∈ H.
We can show that the order of H is m. Indeed, the cyclic group G is isomorphic
to Zn so H is isomorphic to the subgroup of Zn of all y residues such that
my mod n = 0. This equation is equivalent to y mod n

m
= 0. This is equivalent

to y being a multiple of n
m
. There are exactly m such multiples. So, H has

order m.

Q.2 Construct a surjective group homomorphism f from G to H with a polynomially
bounded complexity (in terms of s). Describe the algorithm that implements f and
prove its complexity.



Using the square-and-multiply algorithm, we can implement f : x 7→ x
n
m with

polynomial complexity. Clearly, this is a group homomorphism as

f(xy) = (xy)
n
m = x

n
my

n
m = f(x)f(y)

We can see that f(x) ∈ H as f(x)m = xn = 1.
We have f(g) = g

n
m whose order can only be m as g has order n. So, f(g)

generates H. We deduce that f is surjective.

Q.3 Construct a discrete logarithm algorithm in H of polynomial complexity (in terms of
s). Describe the algorithm and prove its complexity.

We can compute discrete logarithm by exhaustive search, as the cardinality of
H is polynomially bounded.

Q.4 Deduce a DDH distinguisher of polynomial complexity with large advantage. Compute
the advantage.

Let Lg′(x
′) be the function computing the discrete logarithm of x′ in basis g′ in

H. We consider the following algorithm.

Input: (g,X, Y, Z)
1: compute f(g), Lf(g)(f(X)), Lf(g)(f(Y )), Lf(g)(f(Z))
2: if Lf(g)(f(Z)) ≡ Lf(g)(f(X))Lf(g)(f(Y )) (mod m) then
3: output 1
4: else
5: output 0
6: end if

If (g,X, Y, Z) is a DH entry, the output is always 1. If the input (g,X, Y, Z)
is random, f(Z) is a uniformly distributed random element of H, independent
from the others, so the probability to output 1 is 1/#H. So, the advantage is
1− 1/#H. Since H has at least two elements, the advantage is at least 1

2
.



2 MAC vs PRF

In what follows, we consider a function F from {0, 1}ks × Ds to {0, 1}τs , where s is a
security parameter. (For simplicity, s is omitted from notations hereafter.) We can see F
either as a Message Authentication Code (MAC) or as a Pseudo Random Function (PRF).
By default, we consider chosen message attacks and existential forgeries for the security of
MAC functions.

Q.1 Give the following definitions. What does it mean for F to be a secure MAC? What
does it mean for F to be a secure PRF?

F is a secure MAC if for any PPT algorithm A,

Pr[AF (K,.) forges] = negl(s)

where K ∈ {0, 1}k is random, (X, t) a pair of random variables defined as the
output of AF (K,.), and “AF (K,.) forges” is the event that F (K,X) = t and that
A did not query X to the F (K, .) oracle.
F is a secure PRF if for any PPT algorithm A,

Pr[AF (K,.) → 1]− Pr[AF ∗(·) → 1] = negl(s)

where K ∈ {0, 1}k is random and F ∗(·) is a random function from D to {0, 1}τ .

Q.2 If F is a secure PRF and 2−τ is negligible (in terms of s), prove that it is a secure MAC.



We assume that F is a secure PRF. Let A be a PPT chosen message at-
tack with access to an oracle O mapping D elements to {0, 1}τ . Let p =
Pr[AF (K,.) forges]. We want to show that p = negl(s). We define B as fol-
lows:

1: simulate A and forward oracle queries xi and answers ti between A and O
2: eventually, A outputs some (X, t) pair
3: query O(X) = t′

4: if X different from all xi and t = t′ then
5: output 1
6: else
7: output 0
8: end if

When O is the oracle F (K, .), B outputs 1 with probability equal to p. When O
is the oracle F ∗, B outputs 1 with probability q2−τ , where q is the probability
that X is different from all xi. (Indeed, if X differs from all xi, the value F

∗(X)
is undetermined so independent from t; the distribution of t′ is uniform an
independent from t, hence the output is 1 with probability 2−τ .) The advantage
of B as a PRF distinguisher is thus p − q2−τ . Since F is a secure PRF, we
have p = q2−τ + negl(s). Clearly, q2−τ ≤ 2−τ . Assuming that 2−τ is negligible,
we deduce that p is negligible.

Q.3 If 2−τ is not negligible (in terms of s), prove that F is not a secure MAC. Describe an
attack and analyze its complexity.

We define A as follows:

1: set X ∈ D arbitrarily
2: pick t ∈ {0, 1}τ at random with uniform distribution
3: output (X, t)

Clearly, X is not queried to the oracle (there is no query at all). A forges with
probability 2−τ . As 2−τ is not negligible, the above attack shows that F is not
a secure MAC.

Q.4 Let 0τ = (0, . . . , 0) ∈ {0, 1}τ . We assume that 2−τ is negligible. Given F (which is from
{0, 1}k×D to {0, 1}τ ), we consider G(K,x) = (F (K,x), 0τ ) from {0, 1}k×D to {0, 1}2τ .

Q.4a If F is a secure MAC, prove that G is a secure MAC.



We consider a chosen message attack A against G. Let p = Pr[AG(K,.) forges].
We want to show that p = negl(s). We define an attack B against F as fol-
lows:

1: simulate A but when it makes a query xi, forward the query xi, get the
answer ti, and answer (ti, 0

τ ) to the simulation of A
2: eventually, A outputs some (X, t) pair
3: if t = (t′, 0τ ) for some t′ then
4: answer (X, t′)
5: else
6: abort
7: end if

Clearly, B forges with probability p. Since F is a secure MAC, we deduce p =
negl(s).

Q.4b Prove that G is not a secure PRF, even is F is a secure PRF. Describe an attack
and analyze its complexity.

We consider the following distinguisher:

1: set X ∈ D arbitrarily
2: query X to the oracle and get t
3: if t ends with τ zeros then
4: return 1
5: else
6: return 0
7: end if

When the oracle is G(K, .), the distinguisher always outputs 1. When the oracle
is a random function G∗, the distinguisher outputs 1 with probability 2−τ . So,
the advantage is 1− 2−τ . Since τ ≥ 1, the advantage is greater than 1

2
which is

not negligible. (Actually, 2−τ is negligible so the advantage is close to 1.) So,
G is not a secure PRF.



3 Distribution in a Subgroup

We consider two odd prime numbers p and q and g ∈ Z∗
p an element of order q. Let D1 be

the uniform distribution in ⟨g⟩. Let D2 be the uniform distribution in Z∗
p.

Q.1 Compute d, the statistical distance between D1 and D2.

All elements of ⟨g⟩ occur with probability 1
q
resp. 1

p−1
with D1 resp. D2. Others

occur with probability 0 resp. 1
p−1

. So,

d =
1

2
q

∣∣∣∣1q − 1

p− 1

∣∣∣∣+ 1

2
(p− 1− q)

1

p− 1
= 1− q

p− 1

Q.2 Construct a distinguisher between D1 and D2 with advantage d.

We know from the theory that a best distinguisher would
be

input: X
1: if X ∈ ⟨g⟩ then
2: return 1
3: else
4: return 0
5: end if

and that its advantage would be d. We can easily show again that the advantage
is 1 − q

p−1
: with distribution D1, the output is always 1. with distribution D2,

the output is 1 with probability q
p−1

.

Q.3 We assume that 2 has an order bigger than q in Z∗
p. We assume that p > 2n has n bits

and we consider a binary encoding bin : {0, 1}n → Z∗
p such that

bin(b1, . . . , bn) = 1 +
n∑

i=1

bi2
i−1

We use the textbook Diffie-Hellman key exchange to produce a random key K with
distribution D1 between Alice and Bob, following which Alice encrypts a message x ∈
{0, 1}n by sending y = bin(x) × K mod p. Prove that if x = (b, 0, . . . , 0) where b is
uniformly distributed in {0, 1}, we can make a decryption attack in ciphertext-only
mode. Propose a countermeasure.

If b = 0, then y = K ∈ ⟨g⟩. If b = 1, then y = 2K. If we had 2K ∈ ⟨g⟩, this
would imply that 2 ∈ ⟨g⟩ but this is not the case as the order of 2 is bigger than
q. So, 2K ̸∈ ⟨g⟩. So, we can deduce b by checking if y belongs to the subgroup.
We can do so by checking yq = 1.
We could fix it by using a key derivation function (KDF) and having y =
bin(x)× KDF(K).



4 Distinguishers for 3-Round Feistel Schemes

In this exercise, we consider a 3-round Feistel scheme with round functions F1, F2, F3. The
input is a pair x = (xl, xr) and the output is a pair y = (yl, yr). We call xl and xr the
left input and the right input, respectively. We call yl and yr the left output and the right
output, respectively. We define

z = xl ⊕ F1(xr) , yr = xr ⊕ F2(z) , yl = z ⊕ F3(yr)

where ⊕ denotes the bitwise exclusive OR. All values are n-bit strings. We assume that
F1, F2, F3 are independent uniformly distributed random functions.

Q.1 In the following subquestions, we consider distinguishers between the Feistel scheme
and a uniformly distributed random function over 2n-bit strings which are limited to q
chosen input queries.

Q.1a Construct a distinguisher with advantage roughly q2

2
2−n.

HINT: Consider a distinguisher making q chosen inputs x = (xl, a) for a fixed value
a and q different values xl, getting y = (yl, yr) and expecting to find two outputs
sharing the same yr. Make a decision based on the obtained input-output pairs.

We consider the following distinguisher:

1: pick a ∈ {0, 1}n arbitrarily
2: for q pairwise different xl, query x = (xl, a) and collect y = (yl, yr)
3: for each pair (x, x′) such that x ̸= x′ and yr = y′r do
4: if xl ⊕ yl ̸= x′

l ⊕ y′l then
5: return 0
6: end if
7: end for
8: return 1

When querying a Feistel scheme, if xr = x′
r and yr = y′r, we notice that

xl ⊕ yl = F1(xr)⊕ F3(yr) = F1(x
′
r)⊕ F3(y

′
r) = x′

l ⊕ y′l

So, the output is never 0 for the Feistel scheme. The probability that the output
is 0 for a random function is the probability p1 that we find a pair (x, x′) with
x ̸= x′ and yr = y′r, multiplied by the probability p2 that at least one of these
pairs satisfies xl ⊕ yl ̸= x′

l ⊕ y′l. The advantage is thus p1p2.
We have

1− p1 = (1− 2−n)(1− 2 · 2−n) · · · (1− (q − 1) · 2−n) ≥ 1− q(q − 1)

2
2−n

so p1 ≈ q2

2
2−n.

Given a pair, the probability that xl ⊕ yl = x′
l ⊕ y′l is 2

−n. So, p2 ≥ 1− 2−n.

Hence, the advantage is roughly q2

2
2−n.



Q.1b Give an upper bound for the advantage of any distinguisher limited to q queries.

The Luby-Rackoff Theorem says that the advantage is bounded by q2.2−n. So,
the distinguisher from the previous question is close to optimal, if not optimal
already.

Q.2 In this question, we consider a stronger security notion. The adversary has access
to the encryption oracle (chosen plaintext) and to the decryption oracle (chosen ci-
phertext). We consider distinguishers between the Feistel scheme and a uniformly
distributed random permutation over 2n-bit strings which are limited to q chosen
plaintext or ciphertext queries.
We consider the following distinguisher:

1: select a nonzero δ ∈ {0, 1}n arbitrarily
2: pick x = (xl, xr) ∈ {0, 1}2n at random
3: set x′ = (xl ⊕ δ, xr)
4: query with input x and x′ and get y = (yl, yr) and y′ = (y′l, y

′
r)

5: set y′′ = (yl ⊕ δ, yr)
6: query with output y′′ and get x′′ = (x′′

l , x
′′
r)

7: take a decision based on x, y, x′, y′, x′′, y′′

Complete the last step to get a very good advantage and estimate it.

The distinguisher outputs 1 if and only if

yr ⊕ x′′
r = y′r ⊕ xr

Indeed, for the Feistel scheme, we have

yr ⊕x′′
r = yr ⊕ y′′r ⊕F2(y

′′
l ⊕F3(y

′′
r )) = F2(yl⊕ δ⊕F3(yr)) = F2(xl⊕ δ⊕F1(xr))

and
y′r ⊕ xr = x′

r ⊕ F2(x
′
l ⊕ F1(x

′
r))⊕ xr = F2(xl ⊕ δ ⊕ F1(xr))

so the distinguisher always outputs 1.
For the random permutation, x and x′ are two different random inputs, so y
and y′ are two different random outputs. There is a small probability 1

22n−1
that

the event E that y′′ = y′ occurs. If not the case, then x′′ is a random input
different from x and x′. So, x′′

r is equal to xr with probability 2n−2
22n−2

and equal

to any other value t with probability 2n

22n−2
. Hence,

Pr[yr ⊕ x′′
r = y′r ⊕ xr] ≤ Pr[E] +

2n

22n − 2
≤ 1

22n − 1
+

2n

22n − 2

So, the advantage is close to 1.


