1 Security of Key Agreement

We consider a key agreement scheme defined by

- one PPT algorithm $\text{setup}(1^s) \rightarrow \text{pp}$ which generates public parameters $\text{pp};$
- two probabilistic polynomially bounded interactive machines A and B with input pp and producing a secret output K (denoted by K_A for A and by K_B for B).

Correctness implies that the following game outputs 1 with probability 1.

1: $\text{setup}(1^s) \rightarrow \text{pp}$
2: make $A(\text{pp})$ and $B(\text{pp})$ interact with each other and output K_A and K_B
3: output $1_{K_A=K_B}$

Q.1 Give a formal definition for the security against key recovery under passive attacks.
Q.2 Formalize how to define the Diffie-Hellman protocol under this setting.
Q.3 Formally prove that the Diffie-Hellman protocol is secure in the sense of the previous question if and only if the computational Diffie-Hellman problem is hard.
Q.4 We now consider security against Alice’s key recovery under active attacks as defined by the following game:

1: $\text{setup}(1^s) \rightarrow \text{pp}$
2: $\text{st}_A \leftarrow \text{pp}$, $\text{finished}_A \leftarrow \text{false}$
3: $\text{st}_B \leftarrow \text{pp}$, $\text{finished}_B \leftarrow \text{false}$
4: run $A^{\text{OA}_{\text{OB}}}(\text{pp}) \rightarrow K$
5: output $1_{K=K_A}$ and finished_A

$\text{OA}(x)$:
6: if finished_A then return
7: $\text{st}_A \leftarrow (\text{st}_A, x)$
8: run $A(\text{st}_A)$ to get private output st_A and next message y
9: if y non-final then return y
10: $\text{finished}_A \leftarrow \text{true}$
11: $K_A \leftarrow \text{st}_A$
12: return y
And the same for oracle OB. Prove that the Diffie-Hellman protocol is insecure in this sense.

Q.5 Based on some attacks seen in the course, formalize security against key recovery under active attacks making $K_A = K_B$. Prove that Diffie-Hellman is secure by assuming that the problem defined by the following game is hard:

1: setup$(1^s) \rightarrow pp = (q, g)$
2: pick $x, y \in \mathbb{Z}_q^*$
3: $B(pp, g^x, g^y) \rightarrow (u, v, w)$
4: return $1_{u^x = v^y = w}$ and $u, v, w \in \langle g \rangle$ and $w \neq 1$

where g generates $\langle g \rangle$ of order q, with neutral element 1.

2 Advantage Amplification

Let $X_1, \ldots, X_n, Y_1, \ldots, Y_n$ be $2n$ independent Boolean variables. We assume that X_1, \ldots, X_n are identically distributed and that Y_1, \ldots, Y_n are identically distributed. We assume that the statistical distance between the distributions of X_i and Y_j is ε. Given distinguisher, i.e. a Boolean algorithm A (with unbounded complexity), we define $X = A(X_1, \ldots, X_n)$ and $Y = A(Y_1, \ldots, Y_n)$. We are interested in A which maximizes the statistical distance between the distributions of X and Y. We denote by d the statistical distance and we identify random variables by their distributions when computing distances, by abuse of notation.

Q.1 Prove that $d(X, Y) = d((X_1, \ldots, X_n), (Y_1, \ldots, Y_n))$.
Q.2 Assume that $\Pr[X_i = 1] = 0$.
 Q.2a Give the distributions of X_i and Y_j.
 Q.2b Compute $d(X, Y)$ in terms of ε and n.
 Q.2c Give an asymptotic equivalent of the minimal n such that $d(X, Y) \geq \frac{1}{2}$ in terms of ε, when $\varepsilon \to 0$.

Q.3 Assume now that $\Pr[X_i = 1] = \frac{1}{2}(1 - \varepsilon)$ and $\Pr[Y_i = 1] = \frac{1}{2}(1 + \varepsilon)$.
Q.3a Show that $A(z_1, \ldots, z_n) = 1_{z_1 + \cdots + z_n < \frac{\varepsilon}{2}}$ makes $d(X, Y)$ maximal.
Q.3b Given that $\Pr[X_1 + \cdots + X_n < \frac{n}{2}] = \Pr[Y_1 + \cdots + Y_n > \frac{n}{2}]$, prove that for n odd, we have $d(X, Y) = |1 - 2 \Pr[X_1 + \cdots + X_n < \frac{n}{2}]|$.
Q.3c Compute the expected value and the variance of $X_1 + \cdots + X_n$.
Q.3d By approximating $X_1 + \cdots + X_n$ to a normal distribution, give an asymptotic equivalent to n so that $d(X, Y)$ is a constant.