1 Encryption Security with a Ciphertext Checking Oracle

We consider the following One-Way under Validity Checking Attack (OW-VCA) game. The advantage of the adversary is the probability it returns 1.

Game $\Gamma^A(1^s)$:
\begin{itemize}
 \item Gen(1^s) \rightarrow pk, sk
 \item pick $pt^* \in \mathcal{M}_s$ at random
 \item $\text{Enc}(pk, pt^*) \rightarrow ct^*$
 \item $A^{VCO}(pk, ct^*) \rightarrow z$
 \item return $1_{z=pt^*}$
\end{itemize}

Oracle VCO(ct)
\begin{itemize}
 \item $\text{Dec}(sk, ct) \rightarrow x$
 \item return $1_{x\neq \perp}$
\end{itemize}

Where s is the security parameter, (Gen, Enc, Dec) is a public-key cryptosystem, \mathcal{M}_s is the plaintext domain, and \perp is the special output of Dec indicating that decryption failed.

Q.1 Is PKCS#1 v1.5 secure with respect to this notion?
Q.2 Propose a definition of KR-VCA security whose goal is key recovery.
Q.3 We recall the Regev cryptosystem over the plaintext domain $\mathcal{M} = \{0, 1\}$.

Gen selects a prime number p, integers m and n, a parameter $\sigma \ll \frac{p}{m}$. Then, it selects a secret $sk \in \mathbb{Z}_p^n$ and a public key $pk = (A, b)$ satisfying $b = A \times sk + e \mod p$, where $A \in \mathbb{Z}_p^{m \times n}$ is a $m \times n$ matrix and $e \in \mathbb{Z}_p^m$ is an error vector which is selected as follows: for each component i, we sample a real number with normal distribution with mean 0 and standard deviation σ and take e_i as its nearest integer.

Enc(pk, pt) picks a vector $v \in \{0, 1\}^m$ at random, $c_1 = v^t \times A \mod p$, $c_2 = pt \times \left\lfloor \frac{p}{2} \right\rfloor + v^t b \mod p$, and returns $ct = (c_1, c_2)$.

Dec($sk, (c_1, c_2)$) computes $d = c_2 - c_1 \times sk \mod p$ then pt' such that $d - pt' \times \left\lfloor \frac{p}{2} \right\rfloor$ is congruent to an integer in the $[-\frac{p}{4}, \frac{p}{4}]$ interval modulo p.

Prove that the cryptosystem is correct.

Q.4 Make a successful KR-CCA attack on the Regev cryptosystem.
Q.5 We define a cryptosystem over a domain \mathcal{M} as follows: Gen is like in the Regev cryptosystem, Enc first computes $x = (pt, H(pt))$ using a hash function, then encrypt each of the n bits of x using the Regev cryptosystem to obtain $ct = ct_1, \ldots, ct_n$. Dec decrypts the n ciphertexts to obtain n bits x' which are parsed into $x' = (pt', h')$. If $h' = H(pt')$, then pt' is returned. Otherwise, \perp is returned.

Prove that this cryptosystem is not KR-VCA secure.

2 Optimal Resistance to Linear Cryptanalysis Modulo 2

Let n be an integer. We consider X_1, \ldots, X_n i.i.d. random variables which are uniform over \mathbb{Z}_4. We consider Y independent from X_1, \ldots, X_n and uniformly distributed in $\{0, 1\}$. We let $X_{n+1} = Y + X_1 + \cdots + X_n \mod 4$. Finally, $X = (X_1, \ldots, X_{n+1}) \in \mathbb{Z}_4^{n+1}$. We write X as a bitstring of length $2n+2$ by concatenating the binary representation of the X_i over two bits. We denote the bits $X[1], \ldots, X[2n+2]$. Hence, $X_1 = 2X[1]+X[2], X_2 = 2X[3]+X[4]$, etc. We recall that for a random variable B, we have $\text{LP}(B) = \left(E((-1)^B) \right)^2$.

The goal of the exercise is to show that although for every balanced linear function $x \mapsto a \cdot x$ from \mathbb{Z}_2^{2n+2} to \mathbb{Z}_2, the LP bias is very small, there exists a balanced Boolean function $x \mapsto f(x)$ whose LP bias is huge.

Q.1 Let B be the most significant bit of $X_{n+1} - X_1 - \cdots - X_n \mod 4$.
Compute $\text{LP}(B)$.

Q.2 Let a be a nonzero binary mask over $2n+2$ bits such that $a[2n+1] = 0$.
Prove that $\text{LP}(a \cdot X) = 0$.

Q.3 Let a be a binary mask over $2n+2$ bits such that $a[2n+1] = 1$ and $a[i] = 0$ for some odd index i.
Prove that $\text{LP}(a \cdot X) = 0$.

Q.4 Let a be a binary mask over $2n+2$ bits such that $a[i] = 1$ for every odd index i.
Prove that $\text{LP}(a \cdot X) = 2^{-n-1}$ for n odd.

HINT: For every n, $\sum_{w=0}^{n-1} \binom{n}{w} \left(-1 \right)^{w(w-1)/2} = 2^n \left(1 + \sin \frac{n\pi}{2} \right)$.

3 MPC-in-the-Head

Let R be a relation over bitstrings x and w defining an NP language. We assume a multi-party computation (MPC) with two participants A and B such that

- A and B have as public common input x;
- A and B have respective private inputs w_A and w_B;
- A and B have as final common output $R(x, w_A \oplus w_B)$;
- a malicious participant learns nothing about the private input of honest participants.
We let $\mathcal{U}(x, w_U; r_U)$ be the protocol run by $U \in \{A, B\}$ and $\text{Run}(x, A(w_A; r_A), B(w_B; r_B))$ be the interaction. We will use a commitment scheme Commit.

We define a Σ protocol over the challenge set $\{A, B\}$ as follows.

- $\mathcal{P}(x, w)$ first flips w_A, r_A, r_B, sets $w_B = w_A \oplus w$, then simulates the interaction $\text{Run}(x, A(w_A; r_A), B(w_B; r_B))$. It computes the transcript t (i.e. x and the list of exchanged messages) of the protocol.
- It flips k_A and k_B and computes $c_A = \text{Commit}(w_A, r_A; k_A)$ and $c_B = \text{Commit}(w_B, r_B; k_B)$.
- The message $a = (t, c_A, c_B)$ is sent to \mathcal{V}.
- \mathcal{V} flips a challenge $e \in \{A, B\}$ and sends it to \mathcal{P}.
- \mathcal{P} sends $z = (w_e, r_e, k_e)$.
- \mathcal{V} makes a final verification.

Q.1 Describe the final verification of \mathcal{V} and prove that the Σ protocol is correct.
Q.2 Define an extractor and prove it is correct.
Q.3 How would we define a simulator? (An informal argument is fine for this question.)