The exam grade follows a linear scale in which each question has the same weight.

1 Σ Protocol for Discrete Log Equality

We assume that public parameters pp describe a group, how to do operations and comparison in the group, and also give its prime order p. We use additive notation and 0 denotes the neutral element in the group. We define the relation $R((pp, G, X, Y, Z), x)$ for group elements G, X, Y, Z and an integer x which is true if and only if $G \neq 0$, $X = xG$, and $Z = xY$. We construct a Σ-protocol for R with challenge set \mathbb{Z}_p. The prover starts by picking $k \in \mathbb{Z}_p$ with uniform distribution, computing and sending $A = kG$ and $B = kY$. Then, the prover gets a challenge $e \in \mathbb{Z}_p$. The answer is an integer z to be computed in a way which is a subject of the following question. The final verification is also a subject of the following question. The protocol looks like this:

Q.1 Inspired by the Schnorr proof, finish the specification of the prover and the verifier.

Essentially, we do a Schnorr proof in the group of (X, Z) pairs. That is, we prove knowledge of x such that $(X, Z) = x(G, Y)$. Based on that, the prover sends $(A, B) = k(G, Y)$, gets e, and answers by $z = k + ex \mod p$. The final verification is $z(G, Y) = (A, B) + e(X, Z)$, i.e. $zG = A + eX$ and $zY = B + eZ$. The verifier should verify $G \neq 0$ too.
Q.2 Specify the extractor and the simulator.

Given two valid transcripts \((A, B, e_1, z_1)\) and \((A, B, e_2, z_2)\) with the same \((A, B)\) and different \(e_1 \neq e_2\), we set

\[
x = \frac{z_2 - z_1}{e_2 - e_1} \mod p
\]

and we prove \((X, Z) = x(G, Y)\) like in the Schnorr proof. Given \(e\) and a random \(z\), we define \((A, B) = z(G, Y) - e(X, Z)\) and obtain a simulated transcript \((A, B, e, z)\) with same distribution, like in the Schnorr proof:

\[
x(G, Y) = \frac{1}{e_2 - e_1}(z_2(G, Y) - z_1(G, Y))
\]

\[
= \frac{1}{e_2 - e_1}((A, B) + e_2(X, Z) - (A, B) - e_1(X, Z))
\]

\[
= (X, Z)
\]

Frequent mistake in exams: writing \(z_i = k + e_i x\) is incorrect because the prover is malicious and there is no way to be sure that \(z_i\) was computed this way.

Q.3 Fully specify another \(\Sigma\)-protocol for the relation \(R((pp, G, X, Y, Z, U, V), (a, b))\) which is true if and only if \(U = aG + bY\) and \(V = aX + bZ\).
By defining a group action \((a, b) \ast ((G, X), (Y, Z)) = a(G, X) + b(Y, Z)\), we easily extend the previous protocol: the prover picks \((k, k') \in \mathbb{Z}_p^2\), computes and sends \((A, B) = (k, k') \ast ((G, X), (Y, Z))\). The verifier sends a challenge \(e \in \mathbb{Z}_p\). The prover computes and sends \((z, z') = (k, k') + e(a, b) \mod p\). The verifier checks \((z, z') \ast ((G, X), (Y, Z)) = (A, B) + e(U, V)\). The protocol looks as follows:

<table>
<thead>
<tr>
<th>Prover</th>
<th>Verifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>witness: (a, b)</td>
<td>instance: ((pp, G, X, Y, Z, U, V))</td>
</tr>
<tr>
<td>((U = aG + bY \text{ and } V = aX + bZ))</td>
<td></td>
</tr>
<tr>
<td>pick (k, k' \in \mathbb{Z}_p)</td>
<td>pick (e \in \mathbb{Z}_p)</td>
</tr>
<tr>
<td>(A = kG + k'Y, B = kX + k'Z)</td>
<td>verify:</td>
</tr>
<tr>
<td>(z = k + ea \mod p)</td>
<td>(zG + z'Y = A + eU)</td>
</tr>
<tr>
<td>(z' = k' + eb \mod p)</td>
<td>(zX + z'Z = B + eV)</td>
</tr>
</tbody>
</table>

Given \((A, B, e_1, z_1, z'_1)\) and \((A, B, e_2, z_2, z'_2)\), the extractor computes \(a = \frac{z_2 - z_1}{e_2 - e_1}\) and \(b = \frac{z'_2 - z'_1}{e_2 - e_1}\).

Given \(e\) and a random \((z, z')\), the simulator sets \((A, B) = (z, z') \ast ((G, X), (Y, Z)) - e(U, V)\).

Common mistake: a similar protocol with \(k' = k\) does not work as it leaks \(z' - z = b - a\). The simulator should fail.

Another common mistake is to send \(kG, k'Y, kX,\) and \(k'Z\) which is not zero-knowledge either. The simulator does not generate the right distribution.
2 Distinguisher for Lai-Massey Schemes

The Lai-Massey scheme is an alternate construction to the Feistel scheme to build a block cipher from round functions. Let \(n \) be the block size and \(r \) be the number of rounds. We denote by \(\oplus \) the bitwise XOR operation over bitstrings. Let the \(F_i \) be secret functions from \(\{0, 1\}^{\frac{n}{2}} \) to itself and \(\pi \) be a fixed public permutation over \(\{0, 1\}^{\frac{n}{2}} \). Let \(x, y \in \{0, 1\}^{\frac{n}{2}} \) and \(x\|y \) denote the concatenation of the two bitstrings. We define

\[
\varphi(F_1, \ldots, F_r)(x\|y) = \varphi(F_2, \ldots, F_r)(\pi(x \oplus F_1(x \oplus y))||(y \oplus F_1(x \oplus y)))
\]

for \(r > 1 \) and

\[
\varphi(F_r)(x\|y) = (x \oplus F_r(x \oplus y))||(y \oplus F_r(x \oplus y))
\]

when there is a single round. In what follows, we assume that the permutation \(\pi \) is defined by

\[
\pi(x_L\|x_R) = (x_R||(x_L \oplus x_R))
\]

where \(x_L, x_R \in \{0, 1\}^{\frac{n}{4}} \). For example, a 2-round Lai-Massey scheme is represented as follows:

Q.1 If \(\varphi(F_1, \ldots, F_r) \) is the encryption function, what is the decryption function?
We define \(\varphi' \) for \(r > 1 \) by

\[
\varphi'(F_r, \ldots, F_1)(x \| y) = (((\pi^{-1}(x') \oplus F_1(\pi^{-1}(x') \oplus y')))(y' \oplus F_1(\pi^{-1}(x') \oplus y')))
\]

where \(\varphi'(F_r, \ldots, F_2)(x \| y) = (x' \| y') \), and for \(r = 1 \) by \(\varphi'(F_1) = \varphi(F_1) \). We prove by induction that \((\varphi(F_1, \ldots, F_r))^{-1} = \varphi(F_r, \ldots, F_1) \).

This is clear for \(r = 1 \). Actually, \(\varphi'(F_1) = \varphi(F_1) \) and we can directly see that \(\varphi(F_1, \ldots, F_r)) = x \| y \).

Assuming this is true for \(r - 1 \) rounds, we show that \((\varphi'(F_r, \ldots, F_1) \circ \varphi(F_1, \ldots, F_r))(x \| y) = x \| y \) for any \(x \) and \(y \) as follows:

\[
(\varphi'(F_r, \ldots, F_1) \circ \varphi(F_1, \ldots, F_r))(x \| y) = (((\pi^{-1}(x') \oplus F_1(\pi^{-1}(x') \oplus y')))(y' \oplus F_1(\pi^{-1}(x') \oplus y')))
\]

where

\[
(x' \| y') = \varphi'(F_r, \ldots, F_2) (\varphi(F_2, \ldots, F_r)(\pi(x \oplus F_1(x \oplus y)))(y \oplus F_1(x \oplus y)))
\]

By the induction hypothesis, we have

\[
(x' \| y') = (\pi(x \oplus F_1(x \oplus y)))(y \oplus F_1(x \oplus y))
\]

By substituting \(x' \) and \(y' \) in the above equation, we obtain \(\varphi'(F_r, \ldots, F_1) \circ \varphi(F_1, \ldots, F_r))(x \| y) = x \| y \) which proves the property on \(r \) rounds.

Q.2 Give a distinguisher between \(\varphi(F_1) \) and a random permutation with a single known plaintext and advantage close to 1. (Compute the advantage.)

We have

\[
\varphi(F_1)(x \| y) = (x \oplus F_1(x \oplus y))(y \oplus F_1(x \oplus y))
\]

So, if \(x \| y \) is a known plaintext and \(x' \| y' = \varphi(F_1)(x \| y) \) is the corresponding ciphertext, we have

\[
x' \oplus y' = x \oplus y
\]

which is a property being satisfied with probability \(2^{-\frac{n}{2}} \) for the random cipher. Hence, by checking this property, we have a distinguisher with advantage \(1 - 2^{-\frac{n}{2}} \).

Q.3 Give a distinguisher between \(\varphi(F_1, F_2) \) and a random permutation with two chosen plaintexts and advantage close to 1. (Compute the advantage.)
We let $x_L, x_R, y_L, y_R, \alpha, \beta \in \{0, 1\}^n$. We assume that $x_L || x_R || y_L || y_R$ and $(x_L \oplus \alpha || (x_R \oplus \beta || (y_L \oplus \alpha || (y_R \oplus \beta)$ are the chosen plaintexts. Clearly, the input to F_1 is the same in both messages. We let $u || v$ denote the common output. The input and output to π are

$$\pi((x_L \oplus u) || (x_R \oplus v)) = (x_R \oplus v) || (x_L \oplus x_R \oplus u \oplus v)$$

and

$$\pi((x_L \oplus \alpha \oplus u) || (x_R \oplus \beta \oplus v)) = (x_R \oplus \beta \oplus v) || (x_L \oplus \alpha \oplus x_R \oplus \beta \oplus u \oplus v)$$

If the two ciphertexts are $x'_L || x'_R || y'_L || y'_R$ and $x''_L || x''_R || y''_L || y''_R$ respectively, we have

$$x'_L \oplus y'_L = x_R \oplus v \oplus y_L \oplus u$$

$$x'_R \oplus y'_R = x_L \oplus x_R \oplus u \oplus y_R$$

$$x''_L \oplus y''_L = x_R \oplus v \oplus y_L \oplus u \oplus \alpha \oplus \beta$$

$$x''_R \oplus y''_R = x_L \oplus x_R \oplus u \oplus y_R \oplus \alpha \oplus \beta$$

and we can eliminate u and v and obtain

$$x'_R \oplus y'_R \oplus x''_R \oplus y''_R = \alpha \oplus \beta$$

$$x'_L \oplus x'_R \oplus y'_L \oplus y'_R = x''_L \oplus x''_R \oplus y''_L \oplus y''_R$$

These two properties are satisfied with probability close to 2^{-n} for the random cipher. Hence, by checking this property, we have a distinguisher with advantage close to $1 - 2^{-\frac{n}{2}}$.
3 Bias in the Modulo p Seed

We assume a setup phase $\text{Setup}(1^\lambda) \to p$ to determine a public prime number p with security parameter λ. We consider the following generators:

Generator $\text{Gen}_0(1^\lambda, p)$:
1: pick $y \in U \mathbb{Z}_p$
2: return y

Generator $\text{Gen}_1(1^\lambda, p)$:
1: $\ell \leftarrow \lceil \log_2 p \rceil$
2: pick $x \in_U \{0, 1, \ldots, 2^\ell - 1\}$
3: $y \leftarrow x \mod p$
4: return y

Generator $\text{Gen}_2(1^\lambda, p)$:
1: $\ell \leftarrow \lceil \log_2 p \rceil$
2: pick $x \in_U \{0, 1, \ldots, 2^{\ell+\lambda} - 1\}$
3: $y \leftarrow x \mod p$
4: return y

Here, “pick $x \in_U E$” means that we sample x from a set E with uniform distribution. The value ℓ is the bitlength of p. In what follows, we consider distinguishers with unbounded complexity but limited to a single query to a generator.

Q.1 Estimate how ℓ is usually fixed to have λ-bit security for typical cryptography in a (generic) group of order p. (For instance, in an elliptic curve.)

Typically, we need the discrete logarithm to be hard. Due to generic attacks, this requires $\ell \geq 2\lambda$ to have λ-bit security. In a generic group, $\ell = 2\lambda$ is enough.

Q.2 Compute the advantage of the best distinguisher between Gen_0 and Gen_1. Could it be large?
We know that the best advantage of an unbounded distinguisher limited to one sample is equal to the statistical distance between the two distributions. We let d_1 be the statistical distance between the outputs of Gen_0 and Gen_1. We have

$$d_1 = \frac{1}{2} \sum_{y=0}^{p-1} \left| \frac{1}{p} - \Pr[x \mod p = y] \right|$$

where x is uniform in $\{0, 1, \ldots, 2^\ell - 1\}$. Hence, $\Pr[x \mod p = y] = 2^{-\ell}$ if $y \geq 2^\ell \mod p$ and $\Pr[x \mod p = y] = 2 \times 2^{-\ell}$ otherwise. Thus,

$$d_1 = \frac{1}{2} \sum_{y=0}^{(2^\ell \mod p) - 1} \left| \frac{1}{p} - \frac{2}{2^\ell} \right| + \frac{1}{2} \sum_{y=2^\ell \mod p}^{p-1} \left| \frac{1}{p} - \frac{1}{2^\ell} \right|$$

$$= \sum_{y=0}^{(2^\ell \mod p) - 1} \left| \frac{1}{p} - \frac{2}{2^\ell} \right|$$

$$= \left(2^\ell \mod p\right) \left(\frac{2}{2^\ell} - \frac{1}{p}\right)$$

(The second line comes from that the difference between the two sums is equal to the sum of the two sums without absolute values which is zero.) We write $2^\ell = p + r$ with $0 \leq r < 2^\ell - 1 < p$. We have

$$d_1 = r \left(\frac{2}{2^\ell} - \frac{1}{2^\ell - r}\right)$$

As we can see, for $r \approx 2^\ell - 2$, we have $d_1 \approx \frac{1}{6}$. So d_1 can be pretty high. ($\frac{1}{6}$ is not negligible.)

Q.3 Compute the advantage of the best distinguisher between Gen_0 and Gen_2.

Hint: use the Euclidean division $2^{\ell+\lambda} = qp + r$.

We let d_2 be the statistical distance. We write $2^{\ell+\lambda} = qp + r$ with $0 \leq r < p$. For $y \geq r$ we have $\Pr[x \mod p = y] = \frac{q}{2^{\ell+\lambda}}$ and $\Pr[x \mod p = y] = \frac{q+1}{2^{\ell+\lambda}}$ otherwise. Hence, with the same computation,

$$d_2 = \sum_{y=0}^{r-1} \left(\frac{q+1}{2^{\ell+\lambda}} - \frac{1}{p}\right) = \frac{r}{2^{\ell+\lambda} - r} \left(\frac{q+1}{2^{\ell+\lambda}} - \frac{q}{2^{\ell+\lambda} - r}\right) \leq \frac{r}{2^{\ell+\lambda} - r} \frac{2^{\ell+\lambda} - r(q+1)}{2^{\ell+\lambda} - r} \leq 1$$

The upper bound increases with r but we know that $r < p \leq 2^\ell$ so

$$d_2 \leq \frac{1}{2^{\lambda} - 1} \approx 2^{-\lambda}$$
Q.4 Based on the computations, what do you conclude about the generator algorithms?

To obtain a λ-bit security with generators in the group, we should certainly not use Gen_1. The Gen_2 generator is enough if we select a single element. If we rather need to use it n times, we better pick x of bitlength $\ell + \lambda + \lceil \log_2 n \rceil$.