Advanced Cryptography — Midterm Exam

Serge Vaudenay

27.4.2023

- duration: 1h45
- any document allowed
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will <u>**not**</u> answer any technical question during the exam
- readability and style of writing will be part of the grade

1 Computing Squares in Exponent Domain

We consider an algorithm $\mathsf{Setup}(1^s) \xrightarrow{\$} \mathsf{pp}$ based on a security parameter s which generates public parameters pp which include a group element g, the order q of g in the group (assumed to be an odd prime), and materials to be able to do group operations. We define the following three games.

Game CDH	Game CDH*	$\operatorname{Game}\operatorname{Sqr}$
1: Setup $(1^s) \xrightarrow{\$} pp$	1: Setup $(1^s) \xrightarrow{\$} pp$	1: Setup $(1^s) \xrightarrow{\$} pp$
2: pick $x, y \in \mathbf{Z}_q$	2: pick $x, y \in \mathbf{Z}_q^*$	2: pick $x \in \mathbf{Z}_q$
3: $X \leftarrow g^x, Y \leftarrow g^y$	3: $X \leftarrow g^x, Y \leftarrow g^y$	3: $X \leftarrow g^x$
4: $\mathcal{A}(pp, X, Y) \xrightarrow{\$} K$	4: $\mathcal{A}(pp, X, Y) \xrightarrow{\$} K$	4: $\mathcal{A}(pp, X) \xrightarrow{\$} Y$
5: return $1_{K=g^{xy}}$	5: return $1_{K=g^{xy}}$	5: return $1_{V=a^{x^2}}$

The hardness of a game means that for any PPT algorithm \mathcal{A} , the probability that the game returns 1 is a negligible function of s.

Q.1 Prove that the hardness of any of those games imply that $E(\frac{1}{q})$ is a negligible function of s.

HINT: construct an adversary who wins with advantage $E(\frac{1}{a})$.

- $\mathbf{Q.2}$ Prove that the hardness of CDH and of CDH^* are equivalent.
- **Q.3** Prove that the hardness of Sqr implies the hardness of CDH. HINT: be careful about distributions.
- Q.4 Prove that the hardness of CDH implies the hardness of Sqr. HINT: be careful about distributions.

2 Proof of DDH

We consider a PPT algorithm $\mathsf{Setup}(1^s) \xrightarrow{\$} \mathsf{pp} = (\dots, g, q)$ based on a security parameter s which generates public parameters pp which include a group element g, the order q of g in the group (assumed to be prime), and materials to be able to do group operations. We consider the two following relations:

$$\begin{split} R((\mathsf{pp}, X, Y, K), y) &: Y = g^y \land K = X^y \\ R'((\mathsf{pp}, X, Y, K), (x, y)) &: X = g^x \land Y = g^y \land K = g^{xy} \end{split}$$

- **Q.1** Construct a Σ -protocol for the relation R. Carefully specify all elements required in a Σ protocol.
- **Q.2** Construct a Σ -protocol for the relation R'. Carefully specify all elements required in a Σ protocol.