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– duration: 1h45
– any document allowed
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade

The exam grade follows a linear scale in which each question has the same weight.

1 Computing Squares in Exponent Domain

We consider an algorithm Setup(1s)
$−→ pp based on a security parameter s which generates

public parameters pp which include a group element g, the order q of g in the group
(assumed to be an odd prime), and materials to be able to do group operations. We define
the following three games.

Game CDH
1: Setup(1s)

$−→ pp
2: pick x, y ∈ Zq

3: X ← gx, Y ← gy

4: A(pp, X, Y )
$−→ K

5: return 1K=gxy

Game CDH∗

1: Setup(1s)
$−→ pp

2: pick x, y ∈ Z∗
q

3: X ← gx, Y ← gy

4: A(pp, X, Y )
$−→ K

5: return 1K=gxy

Game Sqr

1: Setup(1s)
$−→ pp

2: pick x ∈ Zq

3: X ← gx

4: A(pp, X)
$−→ Y

5: return 1Y=gx2

The hardness of a game means that for any PPT algorithm A, the probability that the
game returns 1 is a negligible function of s.

Q.1 Prove that the hardness of any of those games imply that E(1
q
) is a negligible function

of s.
HINT: construct an adversary who wins with advantage E(1

q
).

We consider an adversary A with input X who picks x′ ∈ Zq at random and
aborts if gx

′ ̸= X. Otherwise, we have gx
′
= X and either game can be won

in a trivial way: CDH or CDH∗ by answering Y x′
, and Sqr by answering g(x

′)2.
Clearly, A wins with probability 1

q
with a fixed group. Hence, the advantage is

E(1
q
). The hardness of either game implies that this is negligible.



Q.2 Prove that the hardness of CDH and of CDH∗ are equivalent.

The difference between CDH and CDH∗ is obtained by the failure case x =
0 or y = 0. The difference of advantage for an adversary playing both games
is bounded by the difference Lemma, hence by the probability that this failure
event happens. It is bounded by E(2

q
) which is negligible, thanks to the previous

question. Hence, the advantage difference is negligible for any A. We deduce
that the hardness of one game implies the hardness of the other game.

Q.3 Prove that the hardness of Sqr implies the hardness of CDH.

HINT: be careful about distributions.



We consider an adversary A playing CDH. We construct an adversary B play-
ing Sqr as follows.

B(pp, X):
1: pick λ ∈ Zq

2: Y ← Xgλ

3: K ← A(pp, X, Y )
4: Z ← KX−λ

5: return Z

For x ∈ Zq uniform, (x, x+λ) is uniformly distributed in Z2
q. Hence, the input

to A follows the same distribution as in the CDH game. Consequently, we
have K = gx

2+λx with probability AdvCDH
A (s), in which case we have Z = gx

2
.

Hence, AdvSqrB (s) = AdvCDH
A (s). Since Sqr is hard, we deduce that AdvCDH

A (s) is
negligible. As this holds for any PPT A, we deduce that CDH is hard.

Another possible solution was to use

B(pp, X):
1: if X = 1 then return 1
2: pick λ ∈ Z∗

q

3: Y ← Xλ

4: K ← A(pp, X, Y )

5: Z ← K
1
λ

6: return Z

but it required to be careful with distributions: to treat the X = 1 case separately
and to use A playing CDH∗. Then, we could use the previous question.

A common mistake is to define B(pp, X) = A(pp, X,X). This solution does
not work because we can only say how successful A is with uniformly distributed
input (X,Y ). In this solution, the input (X,X) is not uniform. It could be the
case that A works very well on average over (X,Y ) (so break CDH) but always
fail when X = Y .

A more subtle mistake was to use

B(pp, X):
1: if X = 1 then return 1
2: pick λ ∈ Z∗

q

3: X ′ ← Xλ

4: Y ← X
1
λ

5: K ← A(pp, X, Y )
6: return K

and arguing that (X ′, Y ) is uniformly distributed, which is wrong. Indeed, al-
through X ′ and Y are both uniform, they are not independent as X ′Y = gx

2

is the exponential of a quadratic residue, so X ′Y is constained to be in half of
the group.



Q.4 Prove that the hardness of CDH implies the hardness of Sqr.
HINT: be careful about distributions.

We consider an adversary A playing Sqr. We construct an adversary B playing
CDH as follows.

B(pp, X, Y ):
1: U ← A(pp, XY )
2: V ← A(pp, X/Y )

3: Z ← (U/V )
1
4

4: return Z

Since 2 is invertible modulo q, (x, y) uniform in Z2
q is equivalent to (x+y, x−y)

uniform in Z2
q. Hence, XY and X/Y are independent and uniform in the

group. For any value of pp, let ppp be the success probability of A in Sqr condi-
tioned to the value of pp being selected. We have that B succeeds with probability
p2pp conditionned to pp. Hence, AdvCDH

B (s) = E(p2pp) while AdvSqrA (s) = E(ppp).

Due to the Jensen inequality, we have E(p2pp) ≥ E(ppp)
2. So, AdvCDH

B (s) ≥
AdvSqrA (s)2. By assumption, we know that AdvCDH

B (s) is negligible. So, AdvSqrA (s)2

is negligible too, and so is AdvSqrA (s). As this holds for any PPT A, we deduce
that Sqr is hard.

A common mistake was to answer something like

B(pp, X, Y ):
1: U ← A(pp, XY )
2: V ← A(pp, X)
3: W ← A(pp, Y )

4: Z ← (U/(VW ))
1
2

5: return Z

The problem here is that the 3 executions of A are not done with independent
inputs. So we cannot say this succeeds with probability p3pp. It could be the case
that A never succeed at the same time on X, Y , and XY but still succeeds well
on average. For instance, if A succeeds on all X = gx such that x is odd, then
it succeeds on half of the group but never at the same time on X, Y , and XY .

No student noticed the problem of computing the probabilities over a fixed pp
then using the Jensen inequality.



2 Proof of DDH

We consider a PPT algorithm Setup(1s)
$−→ pp = (. . . , g, q) based on a security parameter

s which generates public parameters pp which include a group element g, the order q of g
in the group (assumed to be prime), and materials to be able to do group operations. We
consider the two following relations:

R((pp, X, Y,K), y) : Y = gy ∧K = Xy

R′((pp, X, Y,K), (x, y)) :X = gx ∧ Y = gy ∧K = gxy

Q.1 Construct a Σ-protocol for the relation R. Carefully specify all elements required in a
Σ protocol.

We use the discrete log equality protocol from the generalized Schnorr protocol
for φ(y) = (gy, Xy):
– The challenge set is Zq.
– The prover picks k ∈ Zq and sends (R1, R2) = φ(k) = (gk, Xk). After

getting e ∈ Zq, the prover sends s = ey + k mod q.
– The verifier checks φ(s) = (R1 + eY,R2 + eK).
– The extractor with (R1, R2, e1, s1, e2, s2) with e1 ̸= e2 computes y =

s2−s1
e2−e1

mod q.
– The simulator picks s ∈ Zq at random and computes (R1, R2) = φ(s) −

e(Y,K).
All algorithms are clearly PPT. Completeness comes from the homomorphic
property of φ:

φ(s) = eφ(y) + φ(k) = e(R1, R2) + (Y,K)

Extraction comes from

φ(s2 − s1) = (R1 + e2Y,R2 + e2K)− (R1 + e1Y,R2 + e1K) = (e2 − e1).(Y,K)

so φ(y) = (Y,K). The simulation property comes from the usual trick: in the
honest protocol, we observe that s = ey+k is uniformly distributed in Zq since
k is uniform and e is independent. Then, (R1, R2) uniquely follows from e and
s.

Q.2 Construct a Σ-protocol for the relation R′. Carefully specify all elements required in a
Σ protocol.



We define R′′((pp, X, Y,K), x)⇔ X = gx. We have

R′((pp, X, Y,K), (x, y))⇔ R(pp, X, Y,K), y) ∧R′′((pp, X, Y,K), x)

Hence, we can use an AND proof between the previous protocol and the Schnorr
protocol. The result of this AND proof is as follows.
– The challenge set is Zq.
– The prover picks k, k′ ∈ Zq and sends R1 = gk, R2 = Xk, and R3 = gk

′
.

After getting e ∈ Zq, the prover sends s = ey + k mod q and s′ = ex +
k′ mod q.

– The verifier checks gs = R1Y
e, Xs = R2K

e, and gs
′
= R3X

e.
– The extractor with (R1, R2, R3, e1, s1, s

′
1, e2, s2, s

′
2) with e1 ̸= e2 computes

y = s2−s1
e2−e1

mod q and x =
s′2−s′1
e2−e1

mod q.
– The simulator picks s, s′ ∈ Zq at random and computes R1 = gsY −e, R2 =

XsK−e, and R3 = gs
′
X−e.

The properties satisfied by the Σ protocol follow from the AND construction.

A mistake which was observed several times was to use k = k′ in the above
construction. The problem occurred in the simulator who could not enforce a
good distribution. Actually, (s, s′) is not uniformly distributed because s′− s =
e(y − x). As a matter of fact, such solution leaks y − x = s−s′

e
so is not zero-

knowledge.


