
Cryptography and Security Course

(Cryptography Part)

Midterm Solution

Preliminaries and Brute Force Attacks

1. The block-cipher DES is based on a Feistel scheme.

2. The decryption is depicted in Figure 1.

Figure 1: Inversion of a 3-round Feistel scheme.

3. An exhaustive key search on a set of size N has an average complexity of N+1
2 encryptions. Since

N = 296, we get
296 + 1

2
≈ 295.

4. Obviously, we know that at least one key (the right one) is displayed. It remains to estimate the
probability that any wrong key is displayed. Let (x1, y1), . . . , (xt, yt) be the given witnesses. We idealize
Ψ by the uniform random permutation C∗. So, we get

Pr[C∗(xi) = yi for i = 1, . . . , t] ≈ 2−64t,

which shows that the number of wrong keys which are displayed in average is given by

296 − 1
264t

≈ 296−64t.

Thus, the total number of keys which are displayed in average is 1+296−64t. From this, one deduce that
t ≥ 2 ensures with large probability that no wrong key is displayed.



5. We can perform a meet-in-the-middle attack after the first round. Let (x, y) be a given plaintext-
ciphertext pair. We denote the ith round of Ψ by Ri for i = 1, 2, 3. We construct a table composed of
the pairs (k1, R1(k1, x)) for all possible subkeys k1 ∈ {0, 1}32. Then, for any k2 and k3 in {0, 1}32, we
compute R−1

2 (k2, R
−1
3 (k3, y)) and checks whether this value can be found in the above table. If this the

case, the corresponding key (k1, k2, k3) is a key candidate. We obtain about 232 candidates and using
a second plaintext-ciphertext pair should allow to eliminate the wrong ones. This meet-in-the-middle
attack requires 232 blocks of 64 bits (= 235 MB) and a complexity equivalent to about 264 Ψ encryptions.

6. This observation allows us to make an exhaustive search on the subkeys k1 and k2 using a couple
of pairs (x, yR), where x is any plaintext and yR denotes the 32 rightmost bits of the corresponding
ciphertext. Once, these subkeys are known, one can peel-off the two first layers and find k3 by exhaustive
search.

A Known-Plaintext Attack

7. First, we observe that yR = y′R leads to F3(yR) = F3(y′R). From this, we deduce

yL ⊕ F1(xR)⊕ xL = y′L ⊕ F1(x′R)⊕ x′L (1)

8. We are looking for a collision on a set of size 232 elements. Birthday paradox tells us that approxi-
mately

√
232 = 216 plaintext-ciphertext pairs are sufficient.

9. We first collect some plaintext-ciphertext pairs until we get a collision on the 32 rightmost bits of
two ciphertexts. Let us denote the corresponding plaintexts by (xL, xR) and (x′L, x′R). Then, the subkey
k1 can be found by exhaustive search by testing the equality (1). Namely, a candidate for k1 is detected
when this equality holds.

10. We find k1 as in the previous question. Then, yR only depends on k2, which allows to make an
exhaustive search on the subkey k2. Finally, k3 can be also retrieved by an exhaustive search. The
computational complexity is reduced to about 3 · 232 Ψ encryptions. Finding the above collision requires
216 blocks of 32 bits which is equivalent to 218 MB of memory.

4-round Feistel Scheme with Weak Round Functions

11. Since all round functions are affine, we note that any round is an affine transformation over {0, 1}64,
which shows that the 4-round Feistel scheme is an affine transformations well. Since the subkeys are
only involved in the additive part of the round functions, we can write this cipher as

y = A · x⊕ f(k1, k2, k3, k4),

for a matrix A ∈ {0, 1}64×64, a function f , and any plaintext-ciphertext pair (x, y). Using the fact that
the key is only involved in the additive part, we can decipher any ciphertext y′ by computing

A−1(y ⊕ y′)⊕ x.

Note that A is invertible since the Feistel scheme is invertible as well.


