1 CBCMAC and Variants

1. Given some (known or chosen) sample pairs message-code (m;,¢;), the goal of a MAC
forgery attack is to output a valid pair message-code (m, c).

2. It is simply O(2").

3. Since there is a xor between one message block let z; and the result of CBCMAC(K, 21, ... ,2;—1)
they should have the same bit length:

n==~u.

4. As seen in the course:

e choose m; and obtain ¢; «+— CBCMAC(K,mq)
e choose ms and obtain ¢y < CBCMAC(K, m3)

e choose By, let m} = mq||B; and obtain ¢} «— CBCMAC(K,m})
Note that ¢) = CBCMAC(K, B; & CBCMAC(K,m1)) = CBCMAC(K, B; @ ¢1)

e let mb = ma|| By for some Bo
Note that ¢, should be CBCMAC(K, By ® CBCMAC(K, mg)) = CBCMAC(K, By @ ¢2)
So, if Ba @ cg = By @ ¢q then ¢, = ¢
Fix Bo =B ®c1 P co

e output (m2||Bs,c})

2 Modulo 33 Calculus

1. Note that we can write
N=d, 1-10"'+ ... +dy-10*> + dy - 10 + dy

which can be written as)
e

N = Z d; - 10°
i=0

So computing modulo 3 we find
n—1 - 10=1 n—1
N=>di 100 = > d; (mod3)
i=0 i=0

2. To compute N mod 3:
n=>0
fori=0ton—1

n =n 4+ d; mod 3,

output n

3. Computing modulo 11we find

11feven = 1,

n—1 ;
. 11%dd = —]
N=>"di-100 = d; — d; (mod 3)
— L :

. To compute N mod 11:

n=>0
fori=0ton—1

n=mn+ (—1)"-d; mod 11,
output n

. N=22a+12b=3-(7Ta+4b) + a = a (mod 3)
N=22a+12b=11-(2a+b) +b=b (mod 11)

. By using the CRT we know Zss is isomorph to Zs x Z1;. So, any (a,b) € Z3 x Z1; has a
unique representation in Zss.

. First compute 12341234 mod 3: 12341234 =1+2+34+4+1+2+3+4 =2 (mod 3).
The order of Z3 is 2. So, compute 56789 mod 2 = 1.
So,

a =12341234°5™9 =21 =2 (mod 3)

Then, compute 12341234 mod 11: 12341234 =4—-3+2—-14+4—-3+2—-1=4 (mod 11).
The order of Z7; is 10. So, compute 56789 mod 10 = 9. So,

b=12341234° =4 =471 =3 (mod 11)

Finally compute
N =22a + 12b mod 33 = 14

RSA with Faulty Multiplier

. Write
Z Yyl 932(i+7)
4,

. At least once there will be the multiplication « times (3. So, there will be an incorrect
value and the square y? will be incorrect.

x>0 = y>2014908 o gy sy

and
z<27 = oy <242 428 oy <242 oy <y

. Note that y contains at least one 32-bit word equal to @ and another equal to 3. Since
y < q we will have y, = ¢. So o and 3 will be used in a square which lead us to incorrect
decryption of 4. So, ¥, = ' mod q # y,

. Note that y contains at least one 32-bit word equal to @ and another equal to 3. Since
y > p we will have y,, # p and with high probability o and 3 will disappear and there will
be no computation error. So, y;, = ' mod p = y,,.

. If an error occured, we have two different values y and y/. Note that y, = y mod p is equal
to y;, = ¥’ mod p. So, y — y, is a multiple of p as well as y' — y,,.

Computing ged(y — yp, ¥’ — yp), we will obtain p.

Then obtain g by computing N/p.

