1 CBCMAC and Variants

- 1. Given some (known or chosen) sample pairs message-code (m_i, c_i) , the goal of a MAC forgery attack is to output a valid pair message-code (m, c).
- 2. It is simply $\mathcal{O}(2^n)$.
- 3. Since there is a xor between one message block let x_i and the result of CBCMAC $(K, x_1, \ldots, x_{i-1})$ they should have the same bit length:

$$n=b$$
.

- 4. As seen in the course:
 - choose m_1 and obtain $c_1 \leftarrow \mathsf{CBCMAC}(K, m_1)$
 - choose m_2 and obtain $c_2 \leftarrow \mathsf{CBCMAC}(K, m_2)$
 - choose B_1 , let $m_1' = m_1 \| B_1$ and obtain $c_1' \leftarrow \mathsf{CBCMAC}(K, m_1')$ Note that $c_1' = \mathsf{CBCMAC}(K, B_1 \oplus \mathsf{CBCMAC}(K, m_1)) = \mathsf{CBCMAC}(K, B_1 \oplus c_1)$
 - let $m_2' = m_2 \| B_2$ for some B_2 Note that c_2' should be $\mathsf{CBCMAC}(K, B_2 \oplus \mathsf{CBCMAC}(K, m_2)) = \mathsf{CBCMAC}(K, B_2 \oplus c_2)$ So, if $B_2 \oplus c_2 = B_1 \oplus c_1$ then $c_2' = c_1'$ Fix $B_2 = B_1 \oplus c_1 \oplus c_2$
 - output $(m2||B_2, c_1')$

2 Modulo 33 Calculus

1. Note that we can write

$$N = d_{n-1} \cdot 10^{n-1} + \ldots + d_2 \cdot 10^2 + d_1 \cdot 10 + d_0$$

which can be written as

$$N = \sum_{i=0}^{n-1} d_i \cdot 10^i$$

So computing modulo 3 we find

$$N \equiv \sum_{i=0}^{n-1} d_i \cdot 10^i \stackrel{10\equiv 1}{\equiv} \sum_{i=0}^{n-1} d_i \pmod{3}$$

2. To compute $N \mod 3$:

$$n = 0$$

for $i = 0$ to $n - 1$
 $n = n + d_i \mod 3$,
output n

3. Computing modulo 11we find

$$N \equiv \sum_{i=0}^{n-1} d_i \cdot 10^i \stackrel{11^{i_{\text{even}}} \equiv 1,}{\equiv} \sum_{i=0, i \text{ even}}^{n-1} d_i - \sum_{i=0, i \text{ odd}}^{n-1} d_i \pmod{3}$$

4. To compute $N \mod 11$:

$$n = 0$$

for $i = 0$ to $n - 1$
 $n = n + (-1)^i \cdot d_i \mod 11$,
output n

- 5. $N = 22a + 12b = 3 \cdot (7a + 4b) + a \equiv a \pmod{3}$ $N = 22a + 12b = 11 \cdot (2a + b) + b \equiv b \pmod{11}$
- 6. By using the CRT we know \mathbb{Z}_{33} is isomorph to $\mathbb{Z}_3 \times \mathbb{Z}_{11}$. So, any $(a, b) \in \mathbb{Z}_3 \times \mathbb{Z}_{11}$ has a unique representation in \mathbb{Z}_{33} .
- 7. First compute 12341234 mod 3: $12341234 \equiv 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 \equiv 2 \pmod{3}$. The order of \mathbb{Z}_3^* is 2. So, compute 56789 mod 2 = 1. So,

$$a = 12341234^{56789} \equiv 2^1 \equiv 2 \pmod{3}$$

Then, compute 12341234 mod 11: $12341234 \equiv 4 - 3 + 2 - 1 + 4 - 3 + 2 - 1 \equiv 4 \pmod{11}$. The order of \mathbb{Z}_{11}^* is 10. So, compute 56789 mod 10 = 9. So,

$$b = 12341234^{56789} \equiv 4^9 \equiv 4^{-1} \equiv 3 \pmod{11}$$

Finally compute

$$N = 22a + 12b \mod 33 = 14$$

3 RSA with Faulty Multiplier

1. Write

$$\sum_{i,j} y_i \cdot y_j^* \cdot 2^{32(i+j)}$$

- 2. At least once there will be the multiplication α times β . So, there will be an incorrect value and the square y^2 will be incorrect.
- 3.

$$x > 0 \implies y > 2^{\ell-1} + 2^{\ell-3} \implies y > p$$

and

$$x < 2^{\ell - 3} \ \Rightarrow \ y < 2^{\ell - 1} + 2^{\ell - 3} + 2^{\ell - 3} \ \Rightarrow \ y < 2^{\ell - 1} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \ \Rightarrow \ y < q^{\ell - 2} + 2^{\ell - 2} \$$

- 4. Note that y contains at least one 32-bit word equal to α and another equal to β . Since y < q we will have $y_q = q$. So α and β will be used in a square which lead us to incorrect decryption of y_q . So, $y_q' = y' \mod q \neq y_q$
- 5. Note that y contains at least one 32-bit word equal to α and another equal to β . Since y > p we will have $y_p \neq p$ and with high probability α and β will disappear and there will be no computation error. So, $y'_p = y' \mod p = y_p$.
- 6. If an error occurred, we have two different values y and y'. Note that y_p = y mod p is equal to y'_p = y' mod p. So, y y_p is a multiple of p as well as y' y_p. Computing gcd(y y_p, y' y_p), we will obtain p. Then obtain q by computing N/p.