Security and Cryptography

Midterm Exam

October 30th, 2008

Duration: 1 hour 45 min

This document consists of 12 pages.

Instructions

Documents are not allowed apart from linguistic dictionaries.

Electronic devices (including calculators) are not allowed.

Answers must be written on the exercises sheet.

This exam contains 3 independent exercises.

Answers can be either in French or English.

Questions of any kind will certainly not be answered.

Potential errors in these sheets are part of the exam.

You have to put your full name on the first page and have all pages stapled.
1 Square roots of 53 modulo 221

The purpose of this exercise is to solve in \mathbb{Z}_n the equation

$$x^2 \equiv a \pmod{n}$$

with $n = 221$ and $a = 53$.

1. Let $n = pq$ be the factorization of n into prime numbers where p is the smallest one. Compute p and q.

2. Solve in \mathbb{Z}_p the equation $x^2 \equiv a$.

3. Solve in \mathbb{Z}_q the equation $x^2 \equiv a$.
4. Reduce $\alpha = 170$ modulo p and modulo q.

5. Reduce $\beta = 1 - \alpha$ modulo p and modulo q.

6. Given arbitrary u and v, reduce $u\alpha + v\beta$ modulo p and q.

7. List all roots in \mathbb{Z}_n of the equation $x^2 \equiv a$.
2 RSA with exponent 3

In this exercise we consider an RSA modulus $n = pq$ where p and q are large prime numbers (here, by “large” we mean at least equal to 5). We consider a valid RSA exponent e for RSA.

1. Show that neither $p \mod 3$ nor $q \mod 3$ can be equal to 0.

2. Under which condition e is a valid exponent for a modulus n?
From now on, we will assume that $e = 3$.

3. Show that neither $p - 1$ nor $q - 1$ can be multiples of 3.

4. Deduce that $p \mod 3 = q \mod 3 = 2$.

5. What is the value of $n \mod 3$?
6. For any digits \(d_0, \ldots, d_{\ell-1} \), show that
\[
\left(\sum_{i=0}^{\ell-1} d_i 10^i \right) \mod 3 = \left(\sum_{i=0}^{\ell-1} (d_i \mod 3) \right) \mod 3
\]

7. Show that \(e = 3 \) is not a valid RSA exponent for the following RSA modulus:
\[
n = 777\,575\,993
\]
3 Computation in GF(16)

Let us consider the polynomial $P(x) = x^4 + x + 1$ in $\mathbb{Z}_2[x]$.

1. Show that P has no root in \mathbb{Z}_2.

2. Deduce that P has no factor of degree 1 in $\mathbb{Z}_2[x]$.
3. Enumerate all polynomials of degree 2 in \(\mathbb{Z}_2[x] \) and identify the one \(Q(x) \) which is irreducible.

4. Show that \(Q(x) \) does not divide \(P(x) \).

5. Deduce that \(P(X) \) is irreducible.
6. We define

\[\text{GF}(16) \leftrightarrow \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F\} \]

where an hexadecimal \(u = \alpha 2^0 + \beta 2^1 + \gamma 2^2 + \delta 2^3 \) with \(\alpha, \beta, \gamma, \delta \in \{0, 1\} \) is considered to represent the polynomial

\[\alpha + \beta x + \gamma x^2 + \delta x^3 \] in \(\text{GF}(16) \)

Those polynomials in \(\mathbb{Z}_2[x] \) are taken modulo \(P(x) \).

(a) What is the \(\text{GF}(16) \)-sum of 6 and \(A \)?

(b) What is the \(\text{GF}(16) \)-multiplication of 6 and 1?

(c) What is the \(\text{GF}(16) \)-multiplication of 6 and 2?
(d) What is the GF(16)-multiplication of 6 and 3?

(e) What is the GF(16)-inverse of 2?
Any attempt to look at the content of these pages before the signal will be severely punished.

Please be patient.