Cryptography and Security — Final Exam

Serge Vaudenay

12.1.2011

– duration: 3h
– no documents is allowed
– a pocket calculator is allowed
– communication devices are not allowed
– answers to every exercise must be provided on separate sheets
– readability and style of writing will be part of the grade
– do not forget to put your name on every sheet!

Family Name:
Given Name:
Section:
SCIPER:

1 3-Collisions

Let f be a random-looking function from a set X to a set Y. Let N denote the cardinality of Y. We call an r-collision a set $\{x_1, \ldots, x_r\}$ of r elements of X such that $f(x_i) = f(x_j)$ for every i and j.

Q.1 Recall what preimage resistance and collision resistance mean.

Q.2 Name the ideas behind two collision finding algorithms from the course and give their time and memory complexity.
Q.3 Let $y \in \mathcal{Y}$ be a target value. Provide an algorithm A_1 such that upon input y it returns $x \in X$ such that $f(x) = y$ with average complexity N in terms of f evaluations.

Make the complexity analysis.
Q.4 By using A_1 as a subroutine, provide an algorithm A_2 producing r-collisions with complexity rN in terms of f evaluations.
Make the complexity analysis.
Q.5 We consider an algorithm A_3 for making r-collisions, defined by two parameters α and β. The algorithm works in two phases. In the first phase, it picks N^α random $x \in X$ and stores $(f(x), L_{f(x)})$ in a hash table, where $L_{f(x)}$ is a list initialized to the single element x. In the second phase, it iteratively picks N^β random $x \in X$. For each of these x’s, it looks whether $y = f(x)$ has an entry in the hash table. If it does, and if x is not already in the list L_y, x is inserted into the list L_y. If L_y has r elements, the algorithm output L_y. We assume that A_3 never picks the same x twice.

1: for $i = 1$ to N^α do
2: pick a new x at random
3: set $y = f(x)$ and store $(y, (x))$ at place $h(y)$
4: end for
5: for $i = 1$ to N^β do
6: pick a new x at random
7: if there is an entry (y, L_y) at place $h(f(x))$ such that $y = f(x)$ then
8: insert x in list L_y
9: if L_y has size r then
10: yield L_y and stop
11: end if
12: end if
13: end for
14: algorithm failed

Q.5a Show that A_3 either generates r-collisions or fails.
Q.5b Show that the memory complexity is $M = O(N^{\alpha r} \log N)$ and that the time complexity in terms of f evaluations is $T = N^\alpha + N^\beta$.

In what follows we will approximate $T \approx \max(N^\alpha, N^\beta)$ and $M \approx N^\alpha$.
Q.5c For $r = 2$, which inequality shall α and β satisfy to reach a constant probability of success?
For $r = 3$, show that this inequality becomes $\alpha + 2\beta \geq 2$.
Hint: apply the birthday paradox in Phase 2.
Q.5d Show that for parameters for $r = 3$ reaching a constant probability of success, $\log T$ is a function in terms of $\log M$.
Plot its curve.
Q.6 We consider another algorithm A_4 for making 3-collisions, defined by parameters α and β. Now, A_4 runs N^α times a collision-finding algorithm and stores the N^α obtained collisions in the same form (y, L_y) with $L_y = (x_1, x_2)$ as before. In a second phase, A_4 picks N^β random x and check if $f(x)$ hits one of the y in the hash table. If it is the case, a 3-collision is found. (We assume that no x is picked several times.)

1: for $i = 1$ to N^α
2: run a collision-finding algorithm and get x_1 and x_2
3: set $y = f(x_1)$ and store $(y, (x_1, x_2))$ at place $h(y)$
4: end for
5: for $i = 1$ to N^β
6: pick a new x at random
7: if there is an entry (y, L_y) at place $h(f(x))$ such that $y = f(x)$ then
8: insert x in list L_y
9: yield L_y and stop
10: end if
11: end for
12: algorithm failed

Q.6a Show that the memory complexity is $M \approx N^\alpha$ and that the time complexity in terms of f evaluations is $T \approx \max(N^{\alpha+\frac{1}{2}}, N^\beta)$.
Q.6b Show that for $\alpha + \beta \geq 1$ we obtain a constant probability of success.
Plot the curve of minimal $\log T$ in terms of $\log M$ to reach a constant probability of success.
Compare with A_3.
When is it better?
2 Attack on some Implementations of PKCS#1v1.5 Signature with \(e = 3 \)

In this exercise we represent bitstrings in hexadecimal by grouping bits into packets of 4, each packet (nibble) being denoted in hexadecimal with a figure between 0 and F. For instance, 2B represents the bitstring 00101011. Given a bitstring \(x \), we denote by \(\tau \) the integer such that \(x \) is a binary expansion of \(\tau \). For instance, \(\text{FF} = 255 \).

We call a cube an integer whose cubic root is an integer.

Given a message \(m \) and an integer \(\ell_N \), we define the bitstring of length \(\ell_N \)

\[
\text{format}_{\ell_N}(m) = 0001 \text{FF} \cdots \text{FF}00||D(m)
\]

where \(D(m) \) represents the identifier of the hash function \(H \) together with \(H(m) \) following the ASN.1 syntax. As an example, in the SHA-1 case, we have

\[
D(m) = 3021300906052B0E03021A05000414||SHA-1(m)
\]

We denote by \(\ell_D \) the bitlength of \(D(m) \).

We recall that the PKCS#1v1.5 signature for a message \(m \) and a public key \((e,N) \) is an integer \(s \) such that \(0 \leq s < N \) and \(s^e \mod N \) can be parsed following the format \(\text{format}_{\ell_N}(m) \), where \(\ell_N \) is the minimal bitlength of \(N \). It is required that the padding field consisting of FF bytes is at least of 8 bytes.

Throughout this exercise we assume that \(e = 3 \).

Q.1 What is a signature scheme? Describe its components, its functionality, and give an intuition on its security.
Q.2 What is a valid signature for a message m in PKCS#1v1.5? Detail the verification algorithm.

Q.3 Let $u = \text{format}_{k_u}(m)$.
 Q.3a If u is a cube, show that we can easily forge a signature for m without any secret information.
Q.3b We assume that \(u \) looks like a random number less than \(a = 2^{1/2} \cdot 15 \). How many cubes are less than \(a \)?

What is the probability for \(u \) to be a cube?

Q.3c Deduce an algorithm to forge a signature for \(m \) which works with a success probability \(2^{-\frac{1}{3} \cdot 10} \).

Is this practical?
Q.4 Bleichenbacher observed that some parsers just scan the bytes from the formatting rule but do not check that the string terminates after the digest. That is, these implementations accept the following format

\[0001\text{FF}\cdots\text{FF}00\|D(m)\|g\]

where \(g\) is any garbage string, provided that the padding field has at least 8 bytes and that the total length (including the garbage) is \(\ell_N\).

In this question we assume \(\ell_N = 3\ell\). We further assume that \(\ell_N \geq 84 + 6\ell_D\).

Q.4a Let \(P = \text{FF}\cdots\text{FF}\) be a string of FF bytes with bitlength \(\ell_P\). Show that the \(\ell_N\)-bit string \(u = 0001\|P\|00\|D(m)\|00\cdots00\) is such that \(u = 2^{3\alpha} - x2^\gamma\) for some integer \(x\), where \(\alpha = \ell - 5\) and \(\gamma = \ell_N - 24 - \ell_D - \ell_P\).
Q.4b By using the assumption $\ell_N \geq 84 + 6\ell_D$, show that we can select ℓ_p such that $\gamma \geq 2\alpha$ and $x \leq 2^{1/(3\alpha - \gamma)}$.
Q.4c We assume that $x \mod 3 = 0$. Let $y = \frac{1}{3}x2^{a-2} - 2\alpha$ and $s = 2^{\alpha} - y$. Show that $\pi \leq s^3 < \pi + 2y$.
Q.4d Deduce an algorithm to forge signatures on a random message m with success probability $\frac{1}{3}$ based on Bleichenbacher’s observation when 3 divides ℓ_N and $\ell_N \geq 84 + 6\ell_D$.
Q.4e Finally, apply the attack to $\ell_N = 3072$ with SHA-1. Show that the attack applies and that

$$s = 2^{1019} - \frac{1}{3} (2^{288} - D(m))^2^{34}$$

is a valid signature with probability $\frac{1}{3}$ over the random selection of the message.