Cryptography and Security — Midterm Exam

Serge Vaudenay

11.11.2010

– duration: 1h45
– no documents is allowed
– a pocket calculator is allowed
– communication devices are not allowed
– answers to every exercise must be provided on separate sheets
– readability and style of writing will be part of the grade
– do not forget to put your name on every sheet!

1 Birthday Computation

In 2010, January 1st was a Friday. My birthday last Spring was a Monday. If every months had 30 days, it would have been the 5th day of a month. When was it?

2 The Group \(\mathbb{Z}_{77}^* \)

Q.1 Compute \(\varphi(77) \).
Q.2 What is the order of 2 in \(\mathbb{Z}_{77}^* \)?
 Hint: invoke Lagrange and try \(2^{\varphi(77)} \mod 77 \) for all prime factors \(p \) of \(\varphi(77) \).
Q.3 Is 36 mod 7 a power of 2 in \(\mathbb{Z}_7^* \)?
 If yes, give the power.
Q.4 Is 36 mod 11 a power of 2 in \(\mathbb{Z}_{11}^* \)?
 If yes, give the power.
Q.5 Is 36 a power of 2 in \(\mathbb{Z}_{77}^* \)?
 If yes, give the power.
Q.6 Is there any generator in \(\mathbb{Z}_{77}^* \)? If yes, give one.
 Hint: use a Chinese argument.
3 Vernam playing Dices

We play with 6-face dices. For simplicity, we assume that the faces of a dice are numbers from 0 to 5. Assume that Alice and Bob exchange a sequence k_1, k_2, \ldots, k_n of independent trials with a dice.

Q.1 Given a cipher where X denotes the plaintext, Y denotes the ciphertext, and K denotes the key, recall the definition of perfect secrecy.

Q.2 To encrypt a number X between 0 and 5, they take the next unused k_i number and compute $Y = X + k_i \mod 6$.
Assuming that dices are unbiased, show that this cipher provides perfect secrecy.

Q.3 An adversary is an algorithm A taking the ciphertext Y as input and producing a result $A(Y)$. We say that the adversary wins if $A(Y) = X$.
Propose an adversary with winning probability $\frac{1}{6}$.

Q.4 We use the same encryption scheme but with a biased dice to draw the k_i's. That is, there is a vector p such that for all i and k, we have $\Pr[k_i = k] = p_k$ where p_k is not necessarily $\frac{1}{6}$.
Assuming that X is uniformly distributed, provide an adversary with optimal winning probability. What is this probability?

Q.5 Assuming that X is not uniformly distributed but that its distribution is known, show that the following adversary has optimal winning probability.

$$A(y) = \arg \max_x \frac{\Pr[X = x] \Pr[K = y - x]}{\sum_{x'} \Pr[X = x'] \Pr[K = y - x']}$$
(Recall that $\arg \max_x f(x)$ denotes the x such that $f(x)$ is maximal. By convention, if there are several we take one of these arbitrarily.)

Hint: given y, consider maximizing $\Pr[X = x | Y = y]$ over x.

Show that its winning probability is

$$p = \sum_y \max_x \Pr[X = x] \Pr[K = y - x]$$

Show that this holds for the generalized Vernam cipher over any group G.

Hint: did we use $G = \mathbb{Z}_6$ so far?

Q.6 As an example, we assume that $\Pr[K = 0] = \frac{1}{6}(1 - \varepsilon)$, $\Pr[K = 5] = \frac{1}{6}(1 + \varepsilon)$, and $\Pr[K = a] = \frac{1}{6}$ for $a = 1, 2, 3, 4$. We also assume that $X \in \{0, 1, 2, 3, 4\}$ with uniform distribution in this set. (Note that X is not uniformly distributed in G.)

Give the $y \mapsto A(y)$ table of the optimal A and its winning probability.

Hint: apply the results of Q.5.

Q.7 We now assume that dices are unbiased and that X is distributed in $\{0, 1, 2\}$ with $\Pr[X = 1] = \frac{1}{4}$ and $\Pr[X = 0] = \Pr[X = 2] = \frac{1}{2}$. We assume that we encrypt two independent plaintexts X and X' with this distribution, by using the same key K. We denote by $Y' = X' + K$ the ciphertext corresponding to X'.

Given Y and Y', give an optimal strategy to output x and x'.

Hint: use Q.5 over $G = \mathbb{Z}_6^2$ with $\bar{X} = (X, X')$ and some weird distribution for a key \bar{K}.

What is its winning probability?