Cryptography and Security — Midterm Exam

Serge Vaudenay

11.11.2010

- duration: 1h45
- no documents is allowed
- a pocket calculator is allowed
- communication devices are not allowed
- answers to every exercise must be provided on separate sheets
- readability and style of writing will be part of the grade
- do not forget to put your name on every sheet!

1 **Birthday Computation**

In 2010, January 1st was a Friday. My birthday last Spring was a Monday. If every months had 30 days, it would have been the 5th day of a month. When was it?

2 The Group Z_{77}^*

- **Q.1** Compute $\varphi(77)$.

Q.2 What is the order of 2 in \mathbb{Z}_{77}^* ? Hint: invoke Lagrange and try $2^{\frac{\varphi(77)}{p}} \mod 77$ for all prime factors p of $\varphi(77)$.

- **Q.3** Is 36 mod 7 a power of 2 in \mathbb{Z}_7^* ? If yes, give the power.
- **Q.4** Is 36 mod 11 a power of 2 in Z_{11}^* ? If yes, give the power.
- **Q.5** Is 36 a power of 2 in Z_{77}^* ? If yes, give the power.
- **Q.6** Is there any generator in \mathbb{Z}_{77}^* ? If yes, give one. Hint: use a Chinese argument.

3 Vernam playing Dices

We play with 6-face dices. For simplicity, we assume that the faces of a dice are numbers from 0 to 5. Assume that Alice and Bob exchange a sequence k_1, k_2, \ldots, k_n of independent trials with a dice.

- **Q.1** Given a cipher where X denotes the plaintext, Y denotes the ciphertext, and K denotes the key, recall the definition of perfect secrecy.
- **Q.2** To encrypt a number X between 0 and 5, they take the next unused k_i number and compute $Y = X + k_i \mod 6$.

Assuming that dices are unbiased, show that this cipher provides perfect secrecy.

- **Q.3** An adversary is an algorithm \mathcal{A} taking the ciphertext Y as input and producing a result $\mathcal{A}(Y)$. We say that the adversary wins if $\mathcal{A}(Y) = X$. Propose an adversary with winning probability $\frac{1}{6}$.
- **Q.4** We use the same encryption scheme but with a biased dice to draw the k_i 's. That is, there is a vector p such that for all i and k, we have $\Pr[k_i = k] = p_k$ where p_k is not necessarily $\frac{1}{6}$.

Assuming that X is uniformly distributed, provide an adversary with optimal winning probability. What is this probability?

Q.5 Assuming that X is not uniformly distributed but that its distribution is known, show that the following adversary has optimal winning probability.

$$\mathcal{A}(y) = \arg \max_{x} \frac{\Pr[X=x] \Pr[K=y-x]}{\sum_{x'} \Pr[X=x'] \Pr[K=y-x']}$$

(Recall that $\arg \max_x f(x)$ denotes the x such that f(x) is maximal. By convention, if there are several we take one of these arbitrarily.)

Hint: given y, consider maximizing Pr[X = x|Y = y] over x. Show that its winning probability is

$$p = \sum_{y} \max_{x} \Pr[X = x] \Pr[K = y - x]$$

Show that this holds for the generalized Vernam cipher over any group G. Hint: did we use $G = \mathbb{Z}_6$ so far?

Q.6 As an example, we assume that $\Pr[K = 0] = \frac{1}{6}(1 - \varepsilon)$, $\Pr[K = 5] = \frac{1}{6}(1 + \varepsilon)$, and $\Pr[K = a] = \frac{1}{6}$ for a = 1, 2, 3, 4. We also assume that $X \in \{0, 1, 2, 3, 4\}$ with uniform distribution in this set. (Note that X is not uniformly distributed in G.) Give the $y \mapsto \mathcal{A}(y)$ table of the optimal \mathcal{A} and its winning probability.

Hint: apply the results of Q.5.

Q.7 We now assume that dices are unbiased and that X is distributed in $\{0, 1, 2\}$ with $\Pr[X = 1] = \frac{1}{2}$ and $\Pr[X = 0] = \Pr[X = 2] = \frac{1}{4}$. We assume that we encrypt two independent plaintexts X and X' with this distribution, by using the same key K. We denote by Y' = X' + K the ciphertext corresponding to X'.

Given Y and Y', give an optimal strategy to output x and x'.

Hint: use Q.5 over $\bar{G} = \mathbb{Z}_6^2$ with $\bar{X} = (X, X')$ and some weird distribution for a key \bar{K} . What is its winning probability?