1 A Weird Mode of Operation

In this exercise, we assume that we have a block cipher \(C \) and we use it in the following mode of operation: to encrypt a sequence of blocks \(x_1, \ldots, x_n \), we initialize a counter \(t \) to some IV value, then we compute

\[
y_i = t_i \oplus C_K(x_i)
\]

for every \(i \) where \(K \) is the encryption key and \(t_i = \text{IV} + i \). The ciphertext is

\[
\text{IV}, y_1, \ldots, y_n
\]

Namely, IV is sent in clear.

Q.1 Is this mode of operation equivalent to something that you already know? Say why?

It is equivalent to the ECB mode. Namely, a passive adversary can compute \(t_i \) and then \(y_i \oplus t_i \) for every \(i \). This gives the ECB encryption of \(x_1, \ldots, x_n \).

Q.2 Does the IV need to be unique?

No.

Q.3 What kind of security problem does this mode of operation suffer from?

Like the ECB mode, if the entropy of a block \(x_i \) is low, then \(y_i \oplus t_i \) repeats. For instance, \(x_i = x_j \) is equivalent to \(y_i \oplus t_i = y_j \oplus t_j \) which can be observed with values which are sent over the insecure channel.
2 RSA Modulo 1 000 001

Given $a_1, a_2, \ldots, a_n \in \{0, 1, \ldots, 9\}$, we denote by $a_1 a_2 \cdots a_n$ the decimal number equal to $10(10(\cdots 10a_1 + a_2 \cdots) + a_{n-1}) + a_n$.

Q.1 Consider a decimal number \overline{abcdef}. Show that

$$\overline{abcdef} \equiv ab - cd + ef \pmod{101}$$

As an application, compute $336 634 \mod 101$ and $663 368 \mod 101$.

We have

$$\overline{abcdef} = 10(10(10(10a + b) + c) + d) + e) + f$$

$$= 100^2(10a + b) + 100(10c + d) + (10e + f)$$

Since $100 \equiv -1 \pmod{101}$, this writes

$$\overline{abcdef} \equiv (10a + b) - (10c + d) + (10e + f) \pmod{101}$$

which is what we had to prove. So,

$$336 634 \equiv 33 - 66 + 34 = 1 \pmod{101}$$

and

$$663 368 \equiv 66 - 33 + 68 = 101 \equiv 0 \pmod{101}$$

which yields $336 634 \mod 101 = 1$ and $663 368 \mod 101 = 0$.

Q.2 Compute the inverse of $x = 1000$ modulo $p = 101$.

A general method consists of applying the extended Euclid algorithm. We have

$$x_1 = (1000, 1, 0) \quad x_2 = (101, 0, 1)$$
$$x_3 = (101, 0, 1) \quad x_3 = (91, 1, -9) \quad x_3 = x_1 - 9x_2$$
$$x_4 = (91, 1, -9) \quad x_4 = (10, -1, 10) \quad x_4 = x_2 - x_3$$
$$x_5 = (10, -1, 10) \quad x_5 = (1, 10, -99) \quad x_5 = x_3 - 9x_4$$
$$x_6 = (1, 10, -99) \quad x_6 = (0, -101, 1000) \quad x_6 = x_4 - 10x_5$$

so $1 = 1000 \times 10 - 101 \times 99$. Therefore, $x^{-1} \mod p = 10$.

Q.3 Consider a decimal number \overline{abcdef}. Show that

$$\overline{abcdef} \equiv \overline{ab00} - \overline{ab} + \overline{cd} + \overline{ef} \pmod{9901}$$

As an application, compute $336 634 \mod 9901$ and $663 368 \mod 9901$.

Just like before, we have
\[
abc\text{def} = 10(10(10a+b)+c)+d+e+f = 10^4(10a+b+cdef)
\]
Since \(10^4 \equiv 100 - 1 \pmod{9901}\), this writes
\[
abc\text{def} \equiv 100(10a+b) - (10a+b) + cdef \pmod{101}
\]
which is what we had to prove. So,
\[
336634 \equiv 3300 - 33 + 6634 = 9901 \equiv 0 \pmod{9901}
\]
and
\[
663368 \equiv 6600 - 66 + 3368 = 9902 \equiv 1 \pmod{9901}
\]
which yields \(336634 \pmod{101} = 0\) and \(663368 \pmod{101} = 1\).

Q.4 Compute \(x^{199} \pmod{q}\) for \(x = 1000\) and \(q = 9901\).

Then, \(x^{199} \equiv x^4 \times (x^4)^{49} \pmod{q}\). We have
\[
x^2 = 1000^2 = 1000000 \equiv 10000 - 100 + 000 = 9900 \equiv -1 \pmod{q}
\]
so \(x^4 \equiv 1 \pmod{q}\) and \(x^3 \equiv -x \pmod{q} = 8901\). Thus, \(b = 8901\).

Applying the square-and-multiply algorithm would have led to \(x^4 \pmod{q} = 1\) as well.

Q.5 Given \(a\) and \(b\), show that \(x = 336634a + 663368b\) is such that \(x \pmod{101} = a\) and \(x \pmod{9901} = b\).

We have \(336634 \pmod{101} = 1\) and \(663368 \pmod{101} = 0\) so, by linearity, we have \(x \equiv a \pmod{101}\). We have \(336634 \pmod{9901} = 0\) and \(663368 \pmod{9901} = 1\) so, by linearity, we have \(x \equiv b \pmod{9901}\). This expression for \(x\) is actually the inverse formula for the Chinese remainder theorem using moduli 101 and 9901 (note that they are coprime).

Q.6 Given \(p = 101\) and \(q = 9901\), we let \(N = pq\). Compute \(\varphi(N)\) and factor it into a product of prime numbers.

Since \(p\) and \(q\) are prime, we have
\[
\varphi(N) = (p-1)(q-1) = 100 \times 9900 = 990000 = 10^4 \times 9 \times 11 = 2^4 \times 3^2 \times 5^4 \times 11
\]

Q.7 Let \(e\) be an integer. Show that \(e\) is a valid RSA exponent for modulus \(N\) if and only if there is no prime factor of \(\varphi(N)\) dividing \(e\).

\(e\) is a valid RSA exponent if and only if \(\gcd(e, \varphi(N)) = 1\) which is if and only if none of the prime factors of \(\varphi(N)\) divide \(e\). Since the list of prime factors of \(\varphi(N)\) is \(\{2,3,5,11\}\), we obtain the result.
Q.8 Show that \(e = 199 \) is a valid RSA exponent for modulus \(N \) and compute the encryption of \(x = 1000 \) for this public key.

\[199 \text{ has no prime factor in } \{2, 3, 5, 11\} \text{ so it is a valid exponent. To compute } x^e \mod N, \text{ we use the Chinese remainder theorem. We compute } a = x^e \mod p \text{ and } b = x^e \mod q. \]

\[\text{We have } a = x^{199} \mod 101 = x^{199 \mod 100} \mod 101 = x^{-1} \mod 101 = 10 \text{ due to Q.2.} \]

\[\text{Similarly, we have } b = x^{199} \mod 9901 = 8901 \text{ due to Q.4. Finally,} \]

\[x^e \mod N = (336\,634 \times 10 + 663\,368 \times 8901) \mod N = 5\,908\,004\,908 \mod N = 999\,001 \]

\[\text{So, the encryption of } x \text{ is } 999\,001. \]
3 AES Galois Field and AES Decryption

We briefly recall the AES block cipher here. It encrypts a block specified as a 4×4 matrix of bytes s and using a sequence W_0, \ldots, W_n of matrices which are derived from a secret key. For convenience the row and columns indices range from 0 to 3. For instance, $s_{1,3}$ means the term of s in the second row and last column. The main AES encryption function is defined by the following pseudocode:

$$\text{AES encryption}(s, W)$$

1. AddRoundKey(s, W_0)
2. for $r = 1$ to $n - 1$ do
3. SubBytes(s)
4. ShiftRows(s)
5. MixColumns(s)
6. AddRoundKey(s, W_r)
7. end for
8. SubBytes(s)
9. ShiftRows(s)
10. AddRoundKey(s, W_n)

$\text{AddRoundKey}(s, W_r)$ is replacing s by $s \oplus W_r$, the component-wise XOR of matrices s and W_r. $\text{SubBytes}(s)$ is replacing s by a new matrix in which the term at position i, j is $S(s_{i,j})$, where S is a fixed permutation of the set of all byte values. $\text{ShiftRows}(s)$ is replacing s by a new matrix in which the term at position i, j is $s_{i, i+j \mod 4}$. $\text{MixColumns}(s)$ is replacing s by a new matrix in which the column at position j is $M \cdot s_{.j}$, where $s_{.j}$ denotes the column at position j of s and M is a fixed matrix defined by

$$M = \begin{pmatrix} 0x02 & 0x03 & 0x01 & 0x01 \\ 0x01 & 0x02 & 0x03 & 0x01 \\ 0x01 & 0x01 & 0x02 & 0x03 \\ 0x03 & 0x01 & 0x01 & 0x02 \end{pmatrix}$$

The matrix product inherits from the algebraic structure $\text{GF}(256)$ on the set of all byte values. Namely, each byte represents a polynomial on variable x of degree at most 7 and coefficients in \mathbb{Z}_2. Polynomials are added and multiplied modulo 2 and modulo $P(x) = x^8 + x^4 + x^3 + x + 1$. The correspondence between bytes and polynomial works as follows: each byte a is a sequence of 8 bits a_7, \ldots, a_0 which is represented in hexadecimal $0uv$ where u and v are two hexadecimal digits (i.e. between 0 and f), u encodes $a_7a_6a_5a_4$, and v encodes $a_3a_2a_1a_0$ by the following encoding rule:

<table>
<thead>
<tr>
<th>Bit Sequence</th>
<th>Hex Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>00000000</td>
</tr>
<tr>
<td>0001</td>
<td>00010000</td>
</tr>
<tr>
<td>0010</td>
<td>00101000</td>
</tr>
<tr>
<td>0011</td>
<td>00110000</td>
</tr>
<tr>
<td>0100</td>
<td>01000000</td>
</tr>
<tr>
<td>0101</td>
<td>01010000</td>
</tr>
<tr>
<td>0110</td>
<td>01100000</td>
</tr>
<tr>
<td>0111</td>
<td>01110000</td>
</tr>
<tr>
<td>1000</td>
<td>10000000</td>
</tr>
<tr>
<td>1001</td>
<td>10010000</td>
</tr>
<tr>
<td>1010</td>
<td>10100000</td>
</tr>
<tr>
<td>1011</td>
<td>10110000</td>
</tr>
<tr>
<td>1100</td>
<td>11000000</td>
</tr>
<tr>
<td>1101</td>
<td>11010000</td>
</tr>
<tr>
<td>1110</td>
<td>11100000</td>
</tr>
<tr>
<td>1111</td>
<td>11110000</td>
</tr>
</tbody>
</table>

Q.1 Provide a pseudocode for $\text{AES decryption}(s, W)$, for AES decryption.
We remark that \textbf{AddRoundKey} is self-inverse. We further remark that \textbf{SubBytes} and \textbf{ShiftRows} commute.

\textbf{AESdecryption}(s; W)
1: \textbf{AddRoundKey}(s, W_n)
2: \textit{for} \(r = n - 1 \) \textit{down to} 1 \textit{do}
3: \textbf{InvSubBytes}(s)
4: \textbf{InvShiftRows}(s)
5: \textbf{AddRoundKey}(s, W_r)
6: \textbf{InvMixColumns}(s)
7: \textit{end for}
8: \textbf{InvSubBytes}(s)
9: \textbf{InvShiftRows}(s)
10: \textbf{AddRoundKey}(s, W_0)

\textbf{InvSubBytes}(s) is replacing \textit{s} by a new matrix in which the term at position \(i, j \) is \(S^{-1}(s_{i,j}) \). \textbf{InvShiftRows}(s) is replacing \textit{s} by a new matrix in which the term at position \(i, j \) is \(s_{i, -i+j \mod 4} \). \textbf{InvMixColumns}(s) is replacing \textit{s} by a new matrix in which the column at position \(j \) is \(M^{-1} \times s_{j} \).

Q.2 Which polynomial does \textit{0x2b} represent?

\textit{2 encodes} 0010 and \textit{b} encodes 1011, so \textit{0x2b} encodes the bitstring 0010 1011 which represents \(x^5 + x^3 + x + 1 \).

Q.3 Compute \textit{0x53 + 0xb8}.

\textit{Addition is a simple XOR}. \textit{0x53 encodes} 0101 0011 and \textit{0xb8 encodes} 1011 1000. \textit{The XOR is} 1110 1011 which is encoded by \textit{0xeb}. So, \textit{0x53 + 0xb8 = 0xeb}.

Q.4 Compute \textit{0x21 \times 0x25}.

\textit{0x21 represents the polynomial} \(x^5 + 1 \). \textit{0x25 represents the polynomial} \(x^9 + x^2 + 1 \). \textit{We have}

\[(x^5 + 1) \times (x^5 + x^2 + 1) = x^{10} + x^7 + 2x^5 + x^2 + 1 \equiv x^{10} + x^7 + x^2 + 1 \]

\textit{Since} \(x^8 \equiv x^4 + x^3 + x + 1 \) \textit{we have} \(x^9 \equiv x^5 + x^4 + x^2 + x \) \textit{and} \(x^{10} \equiv x^6 + x^5 + x^3 + x^2 \).

\textit{So,}

\[(x^5+1)\times(x^5+x^2+1) \equiv x^{10}+x^7+x^2+1 \equiv x^7+x^6+x^5+x^3+2x^2+1 \equiv x^7+x^6+x^5+x^3+1 \]

\textit{Now,} \(x^7 + x^6 + x^5 + x^3 + 1 \) \textit{is represented by} \textit{0xe9}. \textit{So,} \(0x21 \times 0x25 = 0xe9 \).

Q.5 Compute the inverse of \textit{0x02}.

\textbf{Hint:} look at \(P(x) \).

\textit{Since} \(x^8 + x^4 + x^3 + x + 1 \equiv 0 \), \textit{by multiplying by} \(x^{-1} \) \textit{we obtain} \(x^7 + x^3 + x^2 + 1 + x^{-1} \equiv 0 \), \textit{so} \(x^{-1} = x^7 + x^3 + x^2 + 1 \). \textit{Changing this into hexadecimal bytes, this gives}

\[0x02^{-1} = 0x8d \]
Q.6 Show that M^{-1} is of form

$$M^{-1} = \begin{pmatrix} 0x0e & 0x0b & 0x0d & 0x09 \\ 0x09 & \cdot & \cdot \\ 0x0d & \cdot & \cdot \\ 0x0b & \cdot & \cdot \end{pmatrix},$$

where all missing terms are in the set \{0x09, 0x0b, 0x0d, 0x0e\}.
We first compute

\[
\begin{pmatrix}
0x02 & 0x03 & 0x01 & 0x01 \\
0x01 & 0x02 & 0x03 & 0x01 \\
0x01 & 0x01 & 0x02 & 0x03 \\
0x03 & 0x01 & 0x01 & 0x02
\end{pmatrix}
\times
\begin{pmatrix}
0x0e \\
0x09 \\
0x0d \\
0x0b
\end{pmatrix}
= M \times \begin{pmatrix}
0x0e \\
0x09 \\
0x0d \\
0x0b
\end{pmatrix}
\]

By writing this with polynomials, this gives

\[
M \times \begin{pmatrix}
0x0e \\
0x09 \\
0x0d \\
0x0b
\end{pmatrix}
= \begin{pmatrix}
x & x+1 & 1 & 1 \\
1 & x & x+1 & 1 \\
x+1 & 1 & 1 & x
\end{pmatrix}
\times
\begin{pmatrix}
x^3 + x^2 + x \\
x^3 + 1 \\
x^3 + x^2 + 1 \\
x^3 + x + 1
\end{pmatrix}
= \begin{pmatrix}
1 \\
0 \\
0 \\
0
\end{pmatrix}
\]

By rotating the columns of \(M \) and the rows of the vector in the product we obtain

\[
\begin{pmatrix}
0x02 & 0x03 & 0x01 & 0x01 \\
0x01 & 0x02 & 0x03 & 0x01 \\
0x01 & 0x01 & 0x02 & 0x03 \\
0x03 & 0x01 & 0x01 & 0x02
\end{pmatrix}
\times
\begin{pmatrix}
0x0b \\
0x0e \\
0x09 \\
0x0d
\end{pmatrix}
= \begin{pmatrix}
1 \\
0 \\
0 \\
0
\end{pmatrix}
\]

Now, by rotating the rows of the matrix and of the result, we obtain

\[
\begin{pmatrix}
0x02 & 0x03 & 0x01 & 0x01 \\
0x01 & 0x02 & 0x03 & 0x01 \\
0x01 & 0x01 & 0x02 & 0x03 \\
0x03 & 0x01 & 0x01 & 0x02
\end{pmatrix}
\times
\begin{pmatrix}
0x0b \\
0x0e \\
0x09 \\
0x0d
\end{pmatrix}
= M \times \begin{pmatrix}
0x0b \\
0x0e \\
0x09 \\
0x0d
\end{pmatrix}
= \begin{pmatrix}
0 \\
1 \\
0 \\
0
\end{pmatrix}
\]

By redoing the same, we obtain

\[
M \times \begin{pmatrix}
0x0d \\
0x0b \\
0x0e \\
0x09
\end{pmatrix}
= \begin{pmatrix}
0 \\
1 \\
0 \\
0
\end{pmatrix}
\]

and

\[
M \times \begin{pmatrix}
0x09 \\
0x0d \\
0x0b \\
0x0e
\end{pmatrix}
= \begin{pmatrix}
0 \\
0 \\
0 \\
1
\end{pmatrix}
\]

So,

\[
M \times \begin{pmatrix}
0x0e & 0x0b & 0x0d & 0x09 \\
0x09 & 0x0e & 0x0b & 0x0d \\
0x0d & 0x09 & 0x0e & 0x0b \\
0x0b & 0x0d & 0x09 & 0x0e
\end{pmatrix}
= \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

which gives the inverse of \(M \) and proves the required properties.