Cryptography and Security — Midterm Exam

Ioana Boureanu and Serge Vaudenay

30.11.2012

- duration: 1h45
- no documents is allowed
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will not answer any technical question during the exam
- (if extra space is needed:) the answers to each exercise must be provided on separate sheets
- readability and style of writing will be part of the grade
- do not forget to put your name on every sheet!

1 Message Encoding in a Subgroup of Z_p^* of Prime Order

In what follows, p is an odd prime number which can be written p = 2q + 1 with q being another odd prime number.

- **Q.1** What is the order of \mathbb{Z}_p^* ?
 - List all factors of this number.
 - What are the orders of 1 and -1 in \mathbb{Z}_{p}^{*} ?
- **Q.2** If $x \in QR_p$ is such that $x \neq 1$, show that x generates QR_p .
 - Hint: What is the order of QR_p ?
- **Q.3** Let QR_p be the set of all quadratic residues of \mathbf{Z}_p^* . Show that for all $x \in \mathbf{Z}_p^*$, we have $x \in QR_p$ if and only if $x^{\frac{p-1}{2}} = 1$ in \mathbf{Z}_p .
- **Q.4** Given $x \in \{1, ..., q\}$, show that the cardinality of $\{x, -x\} \cap \mathsf{QR}_p$ is 1. Hint: is -1 in QR_p ?
- **Q.5** Given $x \in \{1, ..., q\}$, let map(x) be the only element between x and -x which is a quadratic residue. Show that map is an one-to-one mapping between $\{1, ..., q\}$ and QR_p .

2 Arithmetic Modulo 101 and 99 999

Let m = 101, n = 99999, a = 4499955 and b = 5599945.

- **Q.1** For $N = 10^k \pm 1$, $k \ge 1$, give a method to compute by hand the modulo N reduction of a big decimal number.
- **Q.2** Compute $a \mod m$, $a \mod n$, $b \mod m$, and $b \mod n$.
- **Q.3** Deduce the *lowest* positive multiple of n which is equal to 2 modulo m.

3 Every Day I'm Shuffling

Let n and r be integers. We consider the vector space $\mathsf{GF}(2)^n$ over $\mathsf{GF}(2)$. A vector $x = (x_1, \ldots, x_n)$ has n binary coordinates x_1, \ldots, x_n . We denote by \oplus the addition of vectors. We denote by $x \cdot y$ the inner product between two vectors x and y. I.e., $x \cdot y = x_1y_1 + x_2y_2 + x_1y_3 + x_2y_4 + x_1y_3 + x_2y_4 + x_1y_4 + x_1y_5 + x_1y_5 + x_1y_5 + x_2y_5 + x_1y_5 + x_$

 $\cdots + x_n y_n \mod 2$. Finally, given two vectors x and y, we define the function $\max(x, y)$ giving the one vector among x and y which represents the binary expansion of the largest integer. (Assume that bits written from left to right, i.e. x_n is the least significant bit.)

Given 2r vectors $K_1, \ldots, K_r, L_1, \ldots, L_r$, we denote $KL = (K_1, \ldots, K_r, L_1, \ldots, L_r)$ and we define the encryption $E_{KL}(X)$ of a vector X with key KL by the following algorithm:

```
proc E_{KL}(X)

1: for i=1 to r do

2: X' \leftarrow K_i \oplus X

3: \hat{X} \leftarrow \max(X, X')

4: if L_i \cdot \hat{X} = 1 then X \leftarrow X'

5: end for

6: return X
```

- **Q.1** Let j be the smallest index such that the jth component of K_i is 1. In iteration i, we consider the values of X and \hat{X} in step 3. Show that $\hat{X} = X \oplus (1 X_j)K_i$.
- **Q.2** In iteration i, we let X_{new} be the value of X after step 4 and still consider the same X and \hat{X} . Show that $X_{\mathsf{new}} = X \oplus (L_i \cdot \hat{X})K_i$.
- **Q.3** Deduce that for whatever KL, x, and y, we have $E_{KL}(x \oplus y) \oplus E_{KL}(0) = E_{KL}(x) \oplus E_{KL}(y)$.
- Q.4 Propose a way to break this symmetric encryption scheme.