Cryptography and Security — Midterm Exam

Solution

Serge Vaudenay

6.12.2013

— duration: 3h00

— no document is allowed except one two-sided sheet

— a pocket calculator is allowed

— communication devices are not allowed

— the exam invigilators will not answer any technical question during the exam
— the answers to each exercise must be provided on separate sheets

— readability and style of writing will be part of the grade

— do not forget to put your name on every sheet!

The exam grade follows a linear scale in which each question has the same weight.

1 Ambiguous Power
We let n = pq be the product of two different prime numbers p and ¢g. We assume that %
and q;21 are odd and coprime.

Q.1 Show that there exists z € N such that z =3 (mod p) and z =5 (mod ¢) and give a
method to compute it.

Since p and q are different prime numbers, they are coprime. So, we can use the
Chinese remainder theorem. Let o = q(g~' mod p) and B = p(p~! mod q). The
number z = 3a + 53 is such that z mod p = 3 and z mod g = 5.
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r, we have z¢ =z

Q.2 Explain how to find some exponent e € N such that for every x € Z
(mod p) and z¢ = 2° (mod q).

NOTE: we do expect a complete mathematical proof for this question.

. p—1 q—1 . p—1
Since Y5~ and *5= are odd and coprime, 2, 55=,

use the Chinese remainder theorem and find e such that e mod 2 =1, e mod p%l =3

—T1 .
and % are coprime. So, we can

and e mod q;21 = 5. Clearly, e and 3 are equal modulo 2 and modulo %, so they are

equal modulo p—1. Similarly, e and 5 are equal modulo 2 and modulo %, so they are

e mod (p—1) 3

=23 (mod p) and z¢ = z° ™04 (4=1) = 45

equal modulo ¢ — 1. So, z¢ = x
(mod q).

Q.3 Application: find such e for p =7 and ¢ = 11.

Leta =15, 8 =10, andy = 6. We take e = a+05+0~ = 15 and obtain e mod 2 =1,
emod 3 = 3mod 3, and e mod 5 = 5 mod 5. We can check that e mod 6 = 3 and
e mod 10 = 5.




Q.4 More generally, under which condition on e, € N and e, € N does some e € N exist such
that ¢ = 2% (mod p) and z¢ = 2% (mod q) for all z € Z}7

For such e to exist, it is necessary thate = e, (mod p—1) ande=¢, (mod gq—1).
Since both p—1 and ¢ — 1 are even, it is necessary that e = e, (mod 2) and e = e,
(mod 2). So, it is necessary that e, = e, (mod 2).

This condition is also sufficient: ife, = e, (mod 2), we construct using the Chinese
remainder theorem e such that e = e, (mod 2) (so, we also havee = e, (mod 2)),
e =ep (mod %), and e = e, (mod q;21) Since e = e, (mod 2) and e = ¢,
(mod %), we deduce e = e, (mod p—1). So, ¢ =z (mod p). Similarly, we
have e = e (mod ¢ —1). So, 2° = 2% (mod q).

Q.5 Could this be interesting to compute two RSA encryptions in parallel (with public keys
(n1,e1) and (ng,ez)) in one exponentiation instead of two?

Computing x° mod ny is done using (logyny)?logyer steps. Computing x°2 mod
no is done using (logsn2)?log, ea steps. Computing x¢ mod (niny) is done using
(logy(ning))?logy e steps. Since e is likely to be of same size as ning, this requires
(logy(n1ng))? steps.

If ny ~ ny = 20 and eq ~ ey ~ 2¢, the two RSA operations roughly take 20%¢ steps.
The combined computation takes 8¢3 steps. So, this is not interesting.

In the case that e; = ea, the same computation gives 40%c. So, this is not interesting
either.

Actually, the CRT acceleration consists of doing in in the other way: instead of com-
puting one exponentiation modulo a large modulus, it is more interesting to compute
several modulo pieces of the modulus.




2 Cubic Roots

Let p be an odd prime number.

Q.1 In this question only, we assume that p mod 3 = 2. Show that every x € Z has exactly
one cubic root and propose a method to compute it.

If pmod 3 = 2, then 3 is coprime with p— 1. So, y = 2> (mod p) is equivalent to
y* =2 (mod p), where e = 37! mod (p — 1). So, y has a unique cubic root which

is y¢ mod p.

Q.2 (From now on, we assume that p mod 3 = 1.) Show that —1 is a quadratic residue in Z,
if and only if p mod 4 = 1.
HINT: invoke Legendre.

—1 is a quadratic residue if and only if (—1/p) = +1. We have (—1/p) = (_1);72;1
by definition. So, (—1/p) = +1 if and only if p%l is even, which is equivalent to
pmod 4 =1.

Q.3 (We recall that p mod 3 = 1.) By considering two cases, compute the Legendre symbol

(3/p).

HINT: we recall the rules to compute the Jacobi symbol:
= (22pd?) for b odd,

) (%) (%) for ¢ odd,

C

lifa=+1 (mod 8) and (%) =—1lifa=43 (mod 8) for a odd,
- (9) ifa=b=3 (mod4)and () = (3) otherwise for a and b odd.
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Using the quadratic reciprocity leads to distinguishing whether p mod 4 = 3 or not,
since 3mod 4 = 3. If pmod 4 = 3, we have (3/p) = —(p/3) = —(1/3) = —1. If
pmod 4 =1, we have (3/p) = (p/3) = (1/3) = 1.

Q.4 (We recall that p mod 3 = 1.) Show that —3 is a quadratic residue.

Based on the previous questions, we can see that (—3/p) = (—=1/p).(3/p) =1 in any
case. So, —3 is a quadratic residue.

Q.5 (We recall that p mod 3 = 1.) Set j a square root of —3.
Show that % is a cubic root of 1. What are the two others?

Let = = 2+j.
We have 6% = I_QZHZ = _12_j. Then, 03 = 020 = 1_4j2 =1.
The two others are 1 and 62 = %

Q.6 (We recall that p mod 3 = 1.) Show that for all = € Z,, x has either 0 or 3 cubic roots.



If © has a cubic root y, then yf and yh* are two other cubic roots. We cannot have
more than 3 cubic roots in a field. So, either we have none, or we have exactly 3.

Q.7 If pmod 9 = 7, show that if x is a cubic residue, then 255 mod p is a cubic root of x.
By using j from Q.5, express the two others.

As in Q.5, we let j denote a square root of —3 and 0 = % Let y = =% mod p.

If + = 23 mod p, then
P =22 =23=2 (modp)

So, y is a cubic root of . The two others are Oy and 0°y.

Q.8 Propose a variant to RSA in which we would use e = 3 but with e and ¢(n) not coprime.

We select two prime numbers p and q such that p mod 9 =7 and ¢ mod 3 = 2, then
form n =pq. We take e = 3, then d, = % and dg = 371 mod (¢ — 1). To encrypt,
we compute y = x> mod n. To decrypt, we compute Tp = y® mod p, Ty = y% mod g,
and x = CRTy, 4(zp, 24q).

If gcd(%, %) = 1, since d, mod 2 = d; mod 2, we can find d such that d =
d, mod (p—1) and d = d, mod (g—1). So, we could decrypt directly by x = y* mod n.
In the above proposal, p and q play two different roles. Another option would be more
symmetric, with p mod 9 = qgmod 9 =7 and dy = %.

The proposed cryptosystem has similar properties as the Rabin cryptosystem. (This
cryptosystem will be covered in a future lecture.)




3 Elliptic Curves with Projective Coordinates

In this exercise, we consider a prime number p > 3. Given a,b € Z,, such that A = —16(4a> +
27b%) # 0, we consider an elliptic curve
Eqp ={0}U{(z,y) € Z;;y2 =23 + ax + b}

We recall that for P = (zp,y,) € Eqp, we define —P = (zp, —yp) and that for P = (zp,yp)
and @ = (g, yq) such that Q # —P, we define P + @ = R with R = (zg,yr) computed by
N { % if xTrp 75 xrQ
- 3m§3+a
2yp

if tp =xg
tpr=N —zp— xQ
yr = (rp —xR)A —yp
The definition of —P and of P + @ is straightforward in other cases of P,Q € E, .
In this exercise, we let T, be the time complexity of one full-size multiplication in Z,
and Ty be the time complexity of one inversion in Z;. We assume that the cost of addition

and of multiplication by 2 or 3 can be neglected. We also assume that the cost of a square is
the same as Ty,,. The exercises is based on the fact that Ti,y > Tmul-

Q.1 Using the recalled formulas, what is the cost of computing P+ Q in the P,Q € E,, —{O}
and ) # —P case?

One a/b computation costs Ty + Tiny-
For P # @Q, computing A costs Tmu + Tiny. Overall, it costs 3Tmu + Tiny-
For P =@, computing A costs 20Ty + Tiny. Overall, it costs 4Ty + Tiny-

Q.2 We define
ELy={(z,y,2) € Zy*2 = 2 + az2® + bz*} — {(0,0,0)}

and a mapping f : E, — Eup by f(z,y,2) = (,%) for z # 0 and f(z,y,2) = O

otherwise. We propose to represent points of E,; by one preimage by f. Under which
condition do two elements of E(Q’b represent the same point in E,;?

Let (v,y,2) and (2',y',2") be elements of Ei ;. If 2 = 0 and 2’ = 0, they both

represent O. If z #0, 2/ #0, £ = j—:, and ¥ = %’ they represent the same point as
well. In other cases, they don’t.
An all-in-one condition could be that xz' = 2’z and yz' = y'z.

Q.3 With the same notations, given P, Q € E;7b, we define R = P + Q by

U=YQzP —YPZQ
v = J}QZP — xsz

rr = v(2g(zpu® — 22pv?) — v?)

YR = zQ(3xpu02 — ypv® — zpu®) + uv®

2p = v32p2g
Show that f(P+ Q) = f(P) + f(Q) in the P # @ case.
HINT: first observe A = =, then compute i—RR and g—g.



We can see that A = 2 from the definition. We compute
v

TR Trp v
TR N\2_9Zf
ZR zZp ZPZQ

and by substituting v we obtain the expression of the first coordinate of f(P)+ f(Q).

Neaxt,
YR _g\TP Yy, U

ZR zZp  zZp Zp2Q

and by substituting u and one expression for A, we obtain the expression of the second

coordinate of f(P)+ f(Q).

Q.4 With the same notations and the proposed representation of points in E,j;, what is now

the cost of computing P + Q7
For which ratio Ty /Tmy is this competitive in the P # @ and P + Q # O case?
HINT: think of reusing some intermediate results.

We first compute u and v in a straightforward way using 41y, time. Then, we
compute u? and v?, then wv?, v3, and wvd. So far, it takes 9Ty time. We can
then compute zpu?, xpv?, then ZQ(ZPU2 —2xpv?), and finally xr. So far, this takes
13T mu time. We reuse xpv? to compute xpuv?, then ypv> and zpu3, and finally yg.
So far, this takes 17T time. We need two more multiplications for zr and reach
19T teme.

There may exist some better strategy to compute P + Q.

Compared to 3Ty + Tiny, this is competitive for Tiny/Tmu > 16.

Q.5 If we do cryptographic operations involving a secret and using the proposed representation
method of points, the element of E(’Lb may leak some information about the computation.
Propose a way to randomize the representation so that it does not leak more than the
point itself.

Once we obtain a result P, we can just multiply all coordinates by some random
r € Z,. We obtain a random element of E{z,b representing the same point. So, at an
extra cost of 3Tmu, we can hide a possible leak.




