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– duration: 3h00
– no document is allowed except one two-sided sheet
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– the answers to each exercise must be provided on separate sheets
– readability and style of writing will be part of the grade
– do not forget to put your name on every sheet!

The exam grade follows a linear scale in which each question has the same weight.

1 Ambiguous Power

We let n = pq be the product of two different prime numbers p and q. We assume that p−1
2

and q−1
2 are odd and coprime.

Q.1 Show that there exists z ∈ N such that z ≡ 3 (mod p) and z ≡ 5 (mod q) and give a
method to compute it.

Since p and q are different prime numbers, they are coprime. So, we can use the
Chinese remainder theorem. Let α = q(q−1 mod p) and β = p(p−1 mod q). The
number z = 3α+ 5β is such that z mod p = 3 and z mod q = 5.

Q.2 Explain how to find some exponent e ∈ N such that for every x ∈ Z∗
n, we have xe ≡ x3

(mod p) and xe ≡ x5 (mod q).
NOTE: we do expect a complete mathematical proof for this question.

Since p−1
2 and q−1

2 are odd and coprime, 2, p−1
2 , and q−1

2 are coprime. So, we can

use the Chinese remainder theorem and find e such that e mod 2 = 1, e mod p−1
2 = 3

and e mod q−1
2 = 5. Clearly, e and 3 are equal modulo 2 and modulo p−1

2 , so they are

equal modulo p−1. Similarly, e and 5 are equal modulo 2 and modulo q−1
2 , so they are

equal modulo q − 1. So, xe ≡ xe mod (p−1) ≡ x3 (mod p) and xe ≡ xe mod (q−1) ≡ x5

(mod q).

Q.3 Application: find such e for p = 7 and q = 11.

Let α = 15, β = 10, and γ = 6. We take e = α+0β+0γ = 15 and obtain e mod 2 = 1,
e mod 3 = 3 mod 3, and e mod 5 = 5 mod 5. We can check that e mod 6 = 3 and
e mod 10 = 5.



Q.4 More generally, under which condition on ep ∈ N and eq ∈ N does some e ∈ N exist such
that xe ≡ xep (mod p) and xe ≡ xeq (mod q) for all x ∈ Z∗

n?

For such e to exist, it is necessary that e ≡ ep (mod p−1) and e ≡ eq (mod q−1).
Since both p− 1 and q− 1 are even, it is necessary that e ≡ ep (mod 2) and e ≡ eq
(mod 2). So, it is necessary that ep ≡ eq (mod 2).
This condition is also sufficient: if ep ≡ eq (mod 2), we construct using the Chinese
remainder theorem e such that e ≡ ep (mod 2) (so, we also have e ≡ eq (mod 2)),
e ≡ ep (mod p−1

2 ), and e ≡ eq (mod q−1
2 ). Since e ≡ ep (mod 2) and e ≡ ep

(mod p−1
2 ), we deduce e ≡ ep (mod p − 1). So, xe ≡ xep (mod p). Similarly, we

have e ≡ eq (mod q − 1). So, xe ≡ xeq (mod q).

Q.5 Could this be interesting to compute two RSA encryptions in parallel (with public keys
(n1, e1) and (n2, e2)) in one exponentiation instead of two?

Computing xe1 mod n1 is done using (log2 n1)
2 log2 e1 steps. Computing xe2 mod

n2 is done using (log2 n2)
2 log2 e2 steps. Computing xe mod (n1n1) is done using

(log2(n1n2))
2 log2 e steps. Since e is likely to be of same size as n1n2, this requires

(log2(n1n2))
3 steps.

If n1 ≈ n2 ≈ 2` and e1 ≈ e2 ≈ 2ε, the two RSA operations roughly take 2`2ε steps.
The combined computation takes 8`3 steps. So, this is not interesting.
In the case that e1 = e2, the same computation gives 4`2ε. So, this is not interesting
either.
Actually, the CRT acceleration consists of doing in in the other way: instead of com-
puting one exponentiation modulo a large modulus, it is more interesting to compute
several modulo pieces of the modulus.



2 Cubic Roots

Let p be an odd prime number.

Q.1 In this question only, we assume that p mod 3 = 2. Show that every x ∈ Z∗
p has exactly

one cubic root and propose a method to compute it.

If p mod 3 = 2, then 3 is coprime with p− 1. So, y ≡ x3 (mod p) is equivalent to
ye ≡ x (mod p), where e = 3−1 mod (p − 1). So, y has a unique cubic root which
is ye mod p.

Q.2 (From now on, we assume that p mod 3 = 1.) Show that −1 is a quadratic residue in Zp

if and only if p mod 4 = 1.
HINT: invoke Legendre.

−1 is a quadratic residue if and only if (−1/p) = +1. We have (−1/p) = (−1)
p−1
2

by definition. So, (−1/p) = +1 if and only if p−1
2 is even, which is equivalent to

p mod 4 = 1.

Q.3 (We recall that p mod 3 = 1.) By considering two cases, compute the Legendre symbol
(3/p).
HINT: we recall the rules to compute the Jacobi symbol:

◦
(
a
b

)
=

(
a mod b

b

)
for b odd,

◦
(
ab
c

)
=

(
a
c

) (
b
c

)
for c odd,

◦
(
2
a

)
= 1 if a ≡ ±1 (mod 8) and

(
2
a

)
= −1 if a ≡ ±3 (mod 8) for a odd,

◦
(
a
b

)
= −

(
b
a

)
if a ≡ b ≡ 3 (mod 4) and

(
a
b

)
=

(
b
a

)
otherwise for a and b odd.

Using the quadratic reciprocity leads to distinguishing whether p mod 4 = 3 or not,
since 3 mod 4 = 3. If p mod 4 = 3, we have (3/p) = −(p/3) = −(1/3) = −1. If
p mod 4 = 1, we have (3/p) = (p/3) = (1/3) = 1.

Q.4 (We recall that p mod 3 = 1.) Show that −3 is a quadratic residue.

Based on the previous questions, we can see that (−3/p) = (−1/p).(3/p) = 1 in any
case. So, −3 is a quadratic residue.

Q.5 (We recall that p mod 3 = 1.) Set j a square root of −3.
Show that −1+j

2 is a cubic root of 1. What are the two others?

Let θ = −1+j
2 .

We have θ2 = 1−2j+j2

4 = −1−j
2 . Then, θ3 = θ2θ = 1−j2

4 = 1.

The two others are 1 and θ2 = −1−j
2 .

Q.6 (We recall that p mod 3 = 1.) Show that for all x ∈ Z∗
p, x has either 0 or 3 cubic roots.



If x has a cubic root y, then yθ and yθ2 are two other cubic roots. We cannot have
more than 3 cubic roots in a field. So, either we have none, or we have exactly 3.

Q.7 If p mod 9 = 7, show that if x is a cubic residue, then x
p+2
9 mod p is a cubic root of x.

By using j from Q.5, express the two others.

As in Q.5, we let j denote a square root of −3 and θ = −1+j
2 . Let y = x

p+2
9 mod p.

If x = z3 mod p, then
y3 ≡ zp+2 ≡ z3 ≡ x (mod p)

So, y is a cubic root of x. The two others are θy and θ2y.

Q.8 Propose a variant to RSA in which we would use e = 3 but with e and ϕ(n) not coprime.

We select two prime numbers p and q such that p mod 9 = 7 and q mod 3 = 2, then
form n = pq. We take e = 3, then dp = p+2

9 and dq = 3−1 mod (q − 1). To encrypt,
we compute y = x3 mod n. To decrypt, we compute xp = ydp mod p, xq = ydq mod q,
and x = CRTp,q(xp, xq).
If gcd(p−1

2 , q−1
2 ) = 1, since dp mod 2 = dq mod 2, we can find d such that d ≡

dp mod (p−1) and d ≡ dq mod (q−1). So, we could decrypt directly by x = yd mod n.
In the above proposal, p and q play two different roles. Another option would be more
symmetric, with p mod 9 = q mod 9 = 7 and dq =

q+2
9 .

The proposed cryptosystem has similar properties as the Rabin cryptosystem. (This
cryptosystem will be covered in a future lecture.)



3 Elliptic Curves with Projective Coordinates

In this exercise, we consider a prime number p > 3. Given a, b ∈ Zp such that ∆ = −16(4a3+
27b2) 6= 0, we consider an elliptic curve

Ea,b = {O} ∪ {(x, y) ∈ Z2
p; y

2 = x3 + ax+ b}

We recall that for P = (xp, yp) ∈ Ea,b, we define −P = (xP ,−yP ) and that for P = (xP , yP )
and Q = (xQ, yQ) such that Q 6= −P , we define P +Q = R with R = (xR, yR) computed by

λ =


yQ−yP
xQ−xP

if xP 6= xQ
3x2

P+a
2yP

if xP = xQ

xR = λ2 − xP − xQ

yR = (xP − xR)λ− yP

The definition of −P and of P +Q is straightforward in other cases of P,Q ∈ Ea,b.
In this exercise, we let Tmul be the time complexity of one full-size multiplication in Zp

and Tinv be the time complexity of one inversion in Z∗
p. We assume that the cost of addition

and of multiplication by 2 or 3 can be neglected. We also assume that the cost of a square is
the same as Tmul. The exercises is based on the fact that Tinv > Tmul.

Q.1 Using the recalled formulas, what is the cost of computing P +Q in the P,Q ∈ Ea,b−{O}
and Q 6= −P case?

One a/b computation costs Tmul + Tinv.
For P 6= Q, computing λ costs Tmul + Tinv. Overall, it costs 3Tmul + Tinv.
For P = Q, computing λ costs 2Tmul + Tinv. Overall, it costs 4Tmul + Tinv.

Q.2 We define
E′

a,b = {(x, y, z) ∈ Z3
p; y

2z = x3 + axz2 + bz3} − {(0, 0, 0)}
and a mapping f : E′

a,b → Ea,b by f(x, y, z) = (xz ,
y
z ) for z 6= 0 and f(x, y, z) = O

otherwise. We propose to represent points of Ea,b by one preimage by f . Under which
condition do two elements of E′

a,b represent the same point in Ea,b?

Let (x, y, z) and (x′, y′, z′) be elements of E′
a,b. If z = 0 and z′ = 0, they both

represent O. If z 6= 0, z′ 6= 0, x
z = x′

z′ , and
y
z = y′

z′ , they represent the same point as
well. In other cases, they don’t.
An all-in-one condition could be that xz′ = x′z and yz′ = y′z.

Q.3 With the same notations, given P,Q ∈ E′
a,b, we define R = P +Q by

u = yQzP − yP zQ

v = xQzP − xP zQ

xR = v(zQ(zPu
2 − 2xP v

2)− v3)

yR = zQ(3xPuv
2 − yP v

3 − zPu
3) + uv3

zR = v3zP zQ

Show that f(P +Q) = f(P ) + f(Q) in the P 6= Q case.
HINT: first observe λ = u

v , then compute xR
zR

and yR
zR

.



We can see that λ = u
v from the definition. We compute

xR
zR

= λ2 − 2
xP
zP

− v

zP zQ

and by substituting v we obtain the expression of the first coordinate of f(P )+f(Q).
Next,

yR
zR

= 3λ
xP
zP

− yP
zP

− λ3 +
u

zP zQ

and by substituting u and one expression for λ, we obtain the expression of the second
coordinate of f(P ) + f(Q).

Q.4 With the same notations and the proposed representation of points in Ea,b, what is now
the cost of computing P +Q?
For which ratio Tinv/Tmul is this competitive in the P 6= Q and P +Q 6= O case?
HINT: think of reusing some intermediate results.

We first compute u and v in a straightforward way using 4Tmul time. Then, we
compute u2 and v2, then uv2, v3, and uv3. So far, it takes 9Tmul time. We can
then compute zPu

2, xP v
2, then zQ(zPu

2− 2xP v
2), and finally xR. So far, this takes

13Tmul time. We reuse xP v
2 to compute xPuv

2, then yP v
3 and zPu

3, and finally yR.
So far, this takes 17Tmul time. We need two more multiplications for zR and reach
19Tmul time.
There may exist some better strategy to compute P +Q.
Compared to 3Tmul + Tinv, this is competitive for Tinv/Tmul ≥ 16.

Q.5 If we do cryptographic operations involving a secret and using the proposed representation
method of points, the element of E′

a,b may leak some information about the computation.
Propose a way to randomize the representation so that it does not leak more than the
point itself.

Once we obtain a result P , we can just multiply all coordinates by some random
r ∈ Z∗

p. We obtain a random element of E′
a,b representing the same point. So, at an

extra cost of 3Tmul, we can hide a possible leak.


