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– duration: 1h45
– no documents allowed, except one 2-sided sheet of handwritten notes
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade

The exam grade follows a linear scale in which each question has the same weight.

1 Generating Prime Numbers

The following exercise is inspired from Efficient Generation of Prime Numbers by
Joye, Paillier, and Vaudenay, published in the proceedings of CHES’00 pp. 340–354,
LNCS vol. 1965, Springer 2000.

We recall that if we pick a random number in {1, 2, . . . , N}, the probability that it is prime
is approximately 1

lnN .
We want to generate prime numbers p and q for an RSA modulus with exponent e = 3.

To generate one ℓ-bit prime number, we iteratively pick a random number between 2ℓ−1 and
2ℓ − 1 until we find a prime number:

GenPrime(ℓ)
1: repeat
2: pick p ∈ {2ℓ−1, 2ℓ−1 + 1, . . . , 2ℓ − 2, 2ℓ − 1} at random
3: until p is prime
4: output p

Then, to generate a 2ℓ-bit RSA key, we proceed as follows:

GenRSA(ℓ)
1: repeat
2: p = GenPrime(ℓ)
3: q = GenPrime(ℓ)
4: until e = 3 is a valid exponent with the RSA modulus pq
5: output p, q

In this exercise, we assume that ℓ is large enough for the RSA security.

Q.1 Estimate the probability that a randomly selected element from {2ℓ−1, 2ℓ−1 + 1, . . . , 2ℓ −
2, 2ℓ − 1} is prime.

The number of prime numbers in this set is (2ℓ − 1)P (2ℓ − 1) − 2ℓ−1P (2ℓ−1) ≈
2ℓ−1
ℓ ln 2 − 2ℓ−1

(ℓ−1) ln 2 ≈ 2ℓ−1

ℓ ln 2 . So, the probability is approximately 1
ℓ ln 2 .



Q.2 Show that the GenPrime algorithm can be speeded up by a factor 2 by selecting random
elements in {2ℓ−1 + 1, 2ℓ−1 + 3, . . . , 2ℓ − 3, 2ℓ − 1}.

The complement of this set has no prime numbers. So, all prime numbers are in this
set of odd numbers. This means that by picking elements in this set, the probability
that it is prime is twice what it was with the complete set. So, the number of trials
is divided by two.

Q.3 Show that e = 3 is a valid RSA exponent if and only if p and q are equal to 2 modulo 3.

We know that e is valid for the modulus pq if and only if gcd(e, φ(pq)) = 1. This is
if and only if gcd(3, (p− 1)(q − 1)) = 1. This is if and only if gcd(3, p− 1) = 1 and
gcd(3, q − 1) = 1.
We still have to show that for a prime p, gcd(3, p−1) = 1 is equivalent to p mod 3 =
2.
Actually, p mod 3 cannot be 0 (since p is large and prime). So, p mod 3 can only be
1 or 2. Clearly, the case of 3 being coprime with p − 1 can only correspond to the
p mod 3 = 2 case.
Hence, 3 is valid for the modulus pq if and only if p mod 3 = 2 and q mod 3 = 2.

Q.4 Consider the following algorithm:

GenRSA′(ℓ)
1: repeat
2: p = GenPrime(ℓ)
3: until p mod 3 = 2
4: repeat
5: q = GenPrime(ℓ)
6: until q mod 3 = 2
7: output p, q

Show that it produces equivalent outputs to GenRSA but with a twice lower expected
complexity.

GenRSA has to generate some primes p and q such that p mod 3 = 2 and q mod 3 =
2, due to the previous question. So, by putting the requirement on the value modulo
3 earlier, we have an algorithm producing equivalent outputs.
A random prime number is equal to 2 modulo 3 with probability 1

2 . So, in the previous
case, we had to iterate 4 times the generation of the two primes to have them both
equal to 2 modulo 3. In total, we had to run the prime number generation 8 times.
With the new algorithm, we iterate the prime number generation twice for each of
the prime numbers, so have 4 prime number generations in total.
This is twice faster.

Q.5 The previous way to generate prime numbers is equivalent to using the following new
algorithm:

GenPrime′(ℓ)
1: repeat
2: pick p ∈ {2ℓ−1, 2ℓ−1 + 1, . . . , 2ℓ − 2, 2ℓ − 1} at random



3: until p is prime and p mod 3 = 2
4: output p

Propose another algorithm GenPrime′′ (we expect a full description of the algorithm in
the same style as GenPrime′) to generate the prime numbers which is about 6 times faster
than GenPrime′. Conclude that GenRSA with this new algorithm instead of GenPrime is
speeded up by a factor of about 12.
HINT: a Chinese proverb says that if you have two requirements at the same time, maybe
you should combine them into a single requirement.

Q.2 suggests to focus on numbers which are equal to 1 modulo 2. Now, we want to
focus on numbers which are equal to 2 modulo 3. Based on the Chinese Remainder
Theorem, we could just focus on numbers which are equal to 5 modulo 6. We consider
the following algorithm:

GenPrime′′(ℓ)
1: repeat
2: pick x such that 2ℓ−1/6 ≤ x < 2ℓ/6 at random
3: set p = 6x+ 5
4: until p is prime
5: output p

Clearly, is produces equivalent outputs but avoids all values modulo 6 which will make
p invalid. So, this new algorithm is 6 times faster than GenPrime.
When put in GenRSA′, this is thus 6 times faster. Since GenRSA′ is twice faster than
GenRSA, we obtain an algorithm which is 12 times faster than GenRSA.

Q.6 Propose a way to speed up GenPrime′′ by a factor 4
5 × 6

7 × 10
11 × 12

13 × 16
17 × 18

19 × 22
23 × · · ·

Instead of picking numbers at random, we should make sure that they are not mul-
tiples of 5, 7, 11, 13, ... For this, we can pick random numbers in Z∗

5, Z
∗
7, Z

∗
11, Z

∗
13,

..., combine them with the Chinese Remainder Theorem together with the 5 modulo
6, obtain a suitable residue r modulo m = 2 · 3 · 5 · 7 · 11 · 13 · · ·, and take p = mx+ r
for x ∈ [2ℓ−1/m, 2ℓ/m[.
For instance, if we continue until the prime number 23, the complexity is twice faster
than the method of the previous question since

4

5
× 6

7
× 10

11
× 12

13
× 16

17
× 18

19
× 22

23
≈ 0.49



2 Encoding Messages in Elliptic Curves

We consider the ElGamal cryptosystem over an elliptic curve. I.e., we work over a field Zp,
use parameters a, b to define the curve y2 = x3 + ax+ b, and use a generator P of the curve,
who has a prime order n. (We recall that n is close to p, due to the Hasse Theorem.) Given
a secret key d, the public key is Q = dP . Normally, we encrypt group elements. To encrypt a
point M in the curve, we compute R = rP for r ∈U Zn and S = M + rQ. The ciphertext is
(R,S).

We want to encrypt bitstrings (of fixed length which is less than log2 n). To encrypt a
bitstring m, we map it to a point on the elliptic curve M = map(m) then encrypt M . We
assume that map is efficiently invertible so that after decrypting (R,S) we can apply map−1

to obtain m. In this exercise, we consider the problem of defining map.

Q.1 Given the secret d and the parameters (p, a, b, n, P ) recall how the above ElGamal cryp-
tosystem is constructed from the semi-static Diffie-Hellman protocol. Then, give the
method to decrypt the ciphertext (R,S).

We have rQ = rdP = dR. This is actually the Diffie-Hellman property: the receiver
selects a long-term secret d and a public key Q = dP and the sender selects an
ephemeral secret r and a public R = rP . The key on which they agree is rdP ,
computed as rQ on the sender side and as dR on the receiver side.
The cryptosystem is performing this Diffie-Hellman-like protocol, then encrypt the
point M by the generalized Vernam cipher with key rdP , i.e., by adding these two
points.
So, M = S − dR which is computed with the secret d and the ephemeral public key
R from the ciphertext. Thus, m = map−1(S − dR).

Q.2 One convenient way to map an element of Zn to the elliptic curve is to multiple the
integer by P . We define a function integer to convert a bitstring into an integer. I.e.,

integer(m) =
∑|m|

i=1mi2
|m|−i, where |m| is the length of the bitstring m and mi is the ith

bit of m.
List the requirements on the map function to make the cryptosystem usable.
Say if the function map(m) = integer(m)P satisfies them.

We need map to
– map bitstrings to the group spanned by P (i.e., the entire elliptic curve, since P

generates it by assumption),
– to be easy to compute,
– to be injective (to be invertible),
– and to have its inverse easy to compute.
First of all, the output of map is clearly in the group spanned by P .
To make it invertible, we must restrict the length of m to log2 n.
Then, we realize that computing map−1 is hard since it consists of computing a
discrete logarithm in the elliptic curve. So, this function is not usable.

Q.3 We now consider map(m) = (x, y) where x = integer(m), y is the smallest square root of
x3+ax+b, and integer converts a bitstring into an integer. By reviewing the requirements
on map, what do you think of this function?



If the computation works, map(m) is clearly a point of the elliptic curve.
To make it invertible, we must restrict the length of m to log2 p. Then, map−1(x, y) =
integer−1(x). So, we only have to convert an integer into a bitstring, which is easy
to do.
One problem is that y2 = x3 + ax+ b has a solution if and only if x3 + ax+ b is a
quadratic residue, and this is not guaranteed. So, m may have no image by map.

Q.4 Let k be a small (public) constant. We change the previous construction by taking x be
the smallest integer at least equal to 2kinteger(m) such that x3 + ax + b is a quadratic
residue. Review again the required properties on map and provide algorithms to compute
map and map−1.

To evaluate map, we increment i from 0 until
(
x3+ax+b

p

)
= +1, for x =

2kinteger(m) + i. Then, we take y the smallest integer such that y2 = x3 + ax + b
and set map(m) = (x, y).

We define map−1(x, y) = integer−1
(
⌊ x
2k
⌋
)
.

This function seems to satisfy our needs, but the distribution of map(m) is not
so good (some points have no preimage), the complexity is not so nice (we may
need to test quadratic residuosity for several values), and we may be careful that
map(map−1(x, y)) may not be equal to (x, y).

Q.5 Assuming that p has 256 bits, propose a value (as small as possible) for k so that the
previous construction should work with probability at least 1− 2−80.
HINT: for this question, assume that x 7→ x3+ax+b maps intervals of size 2k to “random
values” in Zp.

A random value in Zp has a square root with probability roughly 1
2 . By rough es-

timates, a set of 2k random values has all its elements with no square root with
probability 2−2k .
We can encrypt up to p2−k possible plaintexts. Let S be the size of the plaintext space,
between 2 and p2−k. We have S sets of 2k random values. Finally, the probability
that one of the S set is like this is between 2−2k and S2−2k , depending on S.
In the worst case, we have S = p2−k. We can just take k = 9 and have a probability
lower than 2−80 in any case.


