Cryptography and Security — Midterm Exam Solution

Serge Vaudenay

9.12.2016

- duration: 1h45
- no documents allowed, except one 2-sided sheet of handwritten notes
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will <u>**not**</u> answer any technical question during the exam
- readability and style of writing will be part of the grade
- answers should not be written with a pencil

The exam grade follows a linear scale in which each question has the same weight.

1 An Attempt to Fix Double Encryption

We consider a block cipher C over n-bit blocks with a key of n bits. We define $\operatorname{Enc}_{K_1,K_2,K_3}(x) = C_{K_3}(C_{K_1}(x) \oplus K_2)$ where \oplus is the bitwise XOR operation. This defines a new block cipher with n-bit blocks and 3n-bit keys. We consider key recovery known plaintext attacks against Enc using r pairs (x_i, y_i) such that $y_i = \operatorname{Enc}_{K_1,K_2,K_3}(x_i)$ for $i = 1, \ldots, r$.

Throughout this exercise, we measure the time complexity in terms of number of C or C^{-1} operations.

- **Q.1** In this question, we assume that K_2 is fixed and equal to 0.
 - **Q.1a** Show that the equation $y_i = \text{Enc}_{K_1,K_2,K_3}(x_i)$ can be written in the form $f_i(K_1) = g_i(K_3)$ for some functions f_i and g_i .

Clearly,

 $y_i = \operatorname{Enc}_{K_1, K_2, K_3}(x_i)$ $\iff y_i = C_{K_3}(C_{K_1}(x_i) \oplus K_2)$ $\iff y_i = C_{K_3}(C_{K_1}(x_i))$ $\iff C_{K_3}^{-1}(y_i) = C_{K_1}(x_i)$ which is of form $f_i(K_1) = g_i(K_3)$ with $f_i(K_1) = C_{K_1}(x_i)$ and $g_i(K_3) = C_{K_3}^{-1}(y_i)$.

Q.1b Using the previous question, describe an attack method with time complexity of order of magnitude 2^n . (Justify the complexity.)

We have the meet-in-the-middle attack: 1: initialize the hash table T to empty 2: for all K_1 do compute $z = f_1(K_1)$ 3:if T[z] undefined then 4: add list (K_1) in a hash table with key $z: T[z] \leftarrow (K_1)$ 5:6: else insert K_1 in the list $T[z]: T[z] \leftarrow (K_1, T[z])$ γ : end if 8: 9: end for 10: for all K₃ do compute $z = g_1(K_3)$ 11: if T[z] defined then 12:13: for all K_1 in list T[z] do set $i \leftarrow 2$ 14: while $i \leq r$ and $f_i(K_1) = g_i(K_3)$ do 15: set $i \leftarrow i + 1$ 16: if i > r then 17: yield (K_1, K_3) as output 18: 19: end if end while 20: 21: end for end if 22:23: end for It may yield several outputs but it must include the correct one. Spurious outputs are ruled out by increasing r as it will check for more i for i = 2, ..., r. With $r = \mathcal{O}(1)$, the attack has time complexity $\mathcal{O}(2^n)$. Even with larger r, we can see that the probability the while loop iterates more than a constant time is very small. So, the number of K_3 for which we need many iteration is small. The complexity remains $\mathcal{O}(2^n)$.

The optimal value for r is analyzed in the next question.

Q.1c Analyze the probability of success (the probability that it produces the correct solution and only the correct one). Propose (and justify) a minimal value for r to produce a good result.

The attack gives the right solution with probability 1, but may give spurious (K_1, K_3) solutions. Each wrong (K_1, K_3) pair is solution to the system $f_i(K_1) = g_i(K_3)$ for $i = 1, \ldots, r$ with probability 2^{-rn} . We have $2^{2n} - 1$ possible bad solutions. The probability to have no spurious solution is thus $(1 - 2^{-rn})^{2^{2n}-1} \approx e^{-2^{(2-r)n}}$. For r = 1, this probability is e^{-2^n} which is close to 0. For r = 2, this probability is $e^{-1} \approx 37\%$. For r = 3, this probability is $e^{-2^{-n}} \approx 1 - 2^{-n}$ which is very close to 1. So, r = 3 is enough to recover the right solution and only this one with probability very close to 1.

Q.2 We now assume that K_2 is part of the secret with n bits of entropy.

Q.2a Show that the attack of the previous question can be directly adapted to obtain an attack of complexity 2^{2n} .

We set $g_i(K_2, K_3) = C_{K_3}^{-1}(y_i) \oplus K_2$ and have a loop over all (K_2, K_3) instead of K_3 . We obtain a time complexity of 2^{2n} .

Q.2b Show that two equations $y_i = \text{Enc}_{K_1,K_2,K_3}(x_i)$ and $y_j = \text{Enc}_{K_1,K_2,K_3}(x_j)$ imply an equation which can be written in the form $f_{i,j}(K_1) = g_{i,j}(K_3)$ for some functions $f_{i,j}$ and $g_{i,j}$.

 $y_{i} = \operatorname{Enc}_{K_{1},K_{2},K_{3}}(x_{i}) \text{ and } y_{j} = \operatorname{Enc}_{K_{1},K_{2},K_{3}}(x_{j})$ $\iff y_{i} = C_{K_{3}}(C_{K_{1}}(x_{i}) \oplus K_{2}) \text{ and } y_{j} = C_{K_{3}}(C_{K_{1}}(x_{j}) \oplus K_{2})$ $\iff C_{K_{3}}^{-1}(y_{i}) = C_{K_{1}}(x_{i}) \oplus K_{2} \text{ and } C_{K_{3}}^{-1}(y_{j}) = C_{K_{1}}(x_{j}) \oplus K_{2}$ $\implies C_{K_{3}}^{-1}(y_{i}) \oplus C_{K_{3}}^{-1}(y_{j}) = C_{K_{1}}(x_{i}) \oplus C_{K_{1}}(x_{j})$

which is of form $f_{i,j}(K_1) = g_{i,j}(K_3)$ with $f_{i,j}(K_1) = C_{K_1}(x_i) \oplus C_{K_1}(x_j)$ and $g_{i,j}(K_3) = C_{K_3}^{-1}(y_i) \oplus C_{K_3}^{-1}(y_j)$.

Q.2c Deduce an attack method of complexity 2^n and make the analysis like in Q.1c.

Using the previous question, we can use the equations $f_{1,2}(K_1) = g_{1,2}(K_3)$ to obtain the correct (K_1, K_3) and some spurious ones. For each found solution we can compute $K_2 = C_{K_3}^{-1}(y_1) \oplus C_{K_1}(x_1)$. Then, we can check if (K_1, K_2, K_3) is consistent with additional equations $\operatorname{Enc}_{K_1, K_2, K_3}(x_i) = y_i$ for $i = 3, \ldots, r$. The obtained attack has time complexity 2^n . The probability to have no spurious solution is now $(1 - 2^{-rn})^{2^{3n}-1} \approx e^{-2^{(3-r)n}}$ and we need r = 4 to have a probability close to 1 to get only the right key.

2 The Hill Cipher

Let d be an integer. We define the Hill cipher with security parameter d as follows. The message space is \mathbf{Z}_{26}^d . Messages are strings of d alphabetical characters encoded into \mathbf{Z}_{26} . The key space is the set of invertible $d \times d$ matrices over \mathbf{Z}_{26} . Given a key K and a message X, the encryption of X under K is $\mathsf{Enc}_K(X) = K \times X$ with operations modulo 26.

Q.1 Explain how the decryption works.

As the square matrix K is invertible, we can invert it and we obtain $\mathsf{Dec}_K(Y) = K^{-1}Y$.

Q.2 Propose a chosen plaintext key recovery attack with complexity $O(d^2)$ using d chosen plaintexts. (Justify the complexity.)

HINT: assume that read/write of a \mathbf{Z}_{26} element costs $\mathcal{O}(1)$ complexity.

We let $X_i = (0, ..., 0, 1, 0, ..., 0)$ where the 1 is at position i. The vector $Y_i = K \times X_i$ is the *i*th column of K. So, using these d chosen plaintexts, by collecting the ciphertexts we fully reconstruct K. This works with complexity $\mathcal{O}(d^2)$ (the time to read K).

Q.3 Given d known plaintext/ciphertext pairs (X_i, Y_i) for i = 1, ..., d, propose a key recovery attack of complexity $\mathcal{O}(d^4)$ when $d \to +\infty$ and prove the complexity. WARNING: d^4 is lower than d^7 !

HINT: assume that the X_i vectors are linearly independent!

We consider all terms in the first row of K as d unknowns. Looking at the first term of Y_i , we obtain

$$(Y_i)_1 = \sum_{j=1}^d K_{1,j}(X_i)_j$$

which is a linear equation. So, with d known plaintext/ciphertext pairs, we obtain d linear equations in d unknowns. If the X_i are linearly independent, then the system is regular so we can solve it by inverting a d × d matrix. In other cases, the system is likely to have a high rank, so we have a small number of solutions that we can enumerate. Later, we can isolate the right one with additional samples. Inverting a matrix can be performed with Gauss elimination in cubic time. So, we have an attack of complexity $\mathcal{O}(d^3)$ to recover the first row of K. We do this for each row and obtain a complexity of $\mathcal{O}(d \times d^3)$. This is better than a straightforward attack looking at the d^2 unknowns directly which would work in $\mathcal{O}(d \times d^6)$.

3 **Attribute-Based Encryption**

The following exercise is inspired from Fuzzy Identity-Based Encryption by Sahai, and Waters, published in the proceedings of EUROCRYPT'05 pp. 457-473, LNCS vol. 3494, Springer 2005.

We use an *attribute-based* encryption scheme. It allows to encrypt a message respective to a set of attributes att' so that only people having privileges for at least d of these attributes can decrypt the ciphertext. People receive a secret sk corresponding to the list of attributes att that they have. Decryption works only when $\#(\operatorname{att} \cap \operatorname{att}') \geq d$. For instance, an attribute age could represent people over 25, an attribute licence could represent people owning a driving licence. To rent a car, customers should get an ignition key M which is encrypted for people being over 25 and with a driving licence, so with $att' = \{age, licence\}$. Only people with att including these two privileges should be able to decrypt it and take a car. So, we would set d=2. To use this scheme, an authority generates the master secret msk and the master public key mpk using Setup. Then, it gives attributes att to users and gives them a secret key sk to allow them to decrypt some ciphertexts. Finally, an encryption function using mpk and a set of attributes att' can encrypt messages.

We consider (multiplicative) groups G_1 and G_2 of prime order p and a bilinear map

$$e:G_1 \times G_1 \to G_2$$

We recall that it means that we have

$$e(u^{a}v^{b}, w) = e(u, w)^{a}e(v, w)^{b}$$
 and $e(u, v^{a}w^{b}) = e(u, v)^{a}e(u, w)^{b}$

for all $u, v, w \in G_1$ and $a, b \in \mathbb{Z}$. We let g be a generator of G_1 . We assume that e(g, g) is a generator of G_2 . We consider the following algorithms.

 $\mathsf{Setup}(d, n) \to (\mathsf{msk}, \mathsf{mpk})$

- 1: pick $t_1, \ldots, t_n \in \mathbf{Z}_p^*$ and $y \in \mathbf{Z}_p$ at random 2: set $T_i = g^{t_i}, i = 1, \ldots, n$ and $Y = e(g, g)^y$
- 3: set $mpk = (d, T_1, ..., T_n, Y)$ and $msk = (t_1, ..., t_n, y)$

 $\mathsf{Gen}(\mathsf{msk},\mathsf{att})\to\mathsf{sk}\quad \{\mathsf{msk}=(t_1,\ldots,t_n,y),\,\mathsf{att}\subseteq\{1,\ldots,n\}\,\,\mathrm{non\,\,empty}\}$

- 1: pick some random polynomial $q \in \mathbf{Z}_p[x]$ of degree at most d-1 such that q(0) = y in \mathbf{Z}_p 2: set $D_i = g^{\frac{q(i)}{t_i}}$ for $i \in \mathsf{att}$
- 3: set $\mathsf{sk} = (D_i)_{i \in \mathsf{att}}$ {the list of all D_i for $i \in \mathsf{att}$ }

 $\mathsf{Enc}(\mathsf{mpk},\mathsf{att}',M) \to \mathsf{ct} \quad \{\mathsf{mpk} = (d,T_1,\ldots,T_n,Y), \mathsf{att}' \subseteq \{1,\ldots,n\} \text{ non empty, } M \in G_2\}$ 1: pick $s \in \mathbf{Z}_p$ at random

- 2: set $E' = MY^s$ and $E_i = T_i^s$ for $i \in \mathsf{att}'$
- 3: set $\mathsf{ct} = (E', (E_i)_{i \in \mathsf{att}'}) \{ E' \text{ and the list of all } E_i \text{ for } i \in \mathsf{att}' \}$

Q.1 Let $i \neq j$ be two attributes. Show that there exist some $\lambda_{i,j}, \mu_{i,j} \in \mathbb{Z}_p$ such that

$$\forall a, b \in \mathbf{Z}_p \qquad \lambda_{i,j}(ai+b) + \mu_{i,j}(aj+b) = b \pmod{p}$$

We let $\lambda_{i,j} = \frac{j}{j-i}$ and $\mu_{i,j} = -\frac{i}{j-i}$ and the property easily follows.

Q.2 In this question, we assume that d = 2.

Specify a decryption algorithm $\mathsf{Dec}(\mathsf{mpk},\mathsf{sk},\mathsf{ct}) \to M'$ such that for all M, att, $i, j \in \mathsf{att}$ such that $i \neq j$, when we run

- 1: $\mathsf{Setup}(d, n) \to (\mathsf{msk}, \mathsf{mpk})$
- 2: $Gen(msk, att) \rightarrow sk$
- 3: $Enc(mpk, \{i, j\}, M) \rightarrow ct$
- $4: \ \mathsf{Dec}(\mathsf{mpk},\mathsf{sk},\mathsf{ct}) \to M'$

then we always have M' = M.

Q.3 More generally, let $I = \{i_1, \ldots, i_d\} \subseteq \{1, \ldots, n\}$ be a subset of size d. Show that there exists a function $\lambda_I : I \to \mathbf{Z}_p$ such that

$$\forall q \in \mathbf{Z}_p[x] \qquad \deg(q) \le d - 1 \Longrightarrow \lambda_I(i_1)q(i_1) + \dots + \lambda_I(i_d)q(i_d) = q(0) \pmod{p}$$

(q is a polynomial of degree up to d-1).

We can easily show that the solution exists by observing that the linear system

$$\lambda_I(i_1)i_1^j + \dots + \lambda_I(i_d)i_d^j = 1_{j=0}$$

for $j = 0, \ldots, d-1$ is non-singular.

We can also use the Lagrange interpolation polynomials. Let

$$L_{I,i_j}(x) = \prod_{k=1,\dots,j-1,j+1,\dots,d} \frac{x - i_k}{i_j - i_k}$$

We have $L_{I,i_j}(i_{j'}) = 1_{j=j'}$ for all j' = 1, ..., d. So, $L_{I,i_1}(x)q(i_i) + \cdots + L_{I,i_d}(x)q(i_d)$ have the same values as q on I. Since both are polynomials of degree up to d-1 and both agree on at least d points, they must be the same polynomial. So, they match on x = 0 which yields $L_{I,i_1}(0)q(i_i) + \cdots + L_{I,i_d}(0)q(i_d) = q(0)$. Hence,

$$\lambda_I(i_j) = \prod_{k=1,\dots,j-1,j+1,\dots,d} \frac{-i_k}{i_j - i_k}$$

- **Q.4** Specify a decryption algorithm $\mathsf{Dec}(\mathsf{mpk},\mathsf{sk},\mathsf{ct}) \to M'$ such that for all d, n, M, att, att' such that $\#(\mathsf{att} \cap \mathsf{att}') \ge d$, when we run
 - 1: $\mathsf{Setup}(d, n) \to (\mathsf{msk}, \mathsf{mpk})$
 - 2: $Gen(msk, att) \rightarrow sk$
 - 3: $\mathsf{Enc}(\mathsf{mpk},\mathsf{att}',M) \to \mathsf{ct}$
 - $4: \ \mathsf{Dec}(\mathsf{mpk},\mathsf{sk},\mathsf{ct}) \to M'$

then we always have M' = M.

Let I be an arbitrary subset of
$$\operatorname{att} \cap \operatorname{att}'$$
 of cardinality exactly d. We have

$$\frac{E'}{\prod_{i \in I} e(D_i, E_i)^{\lambda_I(i)}} = \frac{E'}{\prod_{i \in I} e\left(g^{\frac{q(i)}{t_i}}, g^{t_is}\right)^{\lambda_I(i)}}$$

$$= \frac{E'}{e(g, g)^{s \times \sum_{i \in I} q(i)\lambda_I(i)}}$$

$$= \frac{MY^s}{e(g, g)^{ys}}$$

$$= M$$

So the decryption can work like this.