
Cryptography and Security — Midterm Exam

Solution

Serge Vaudenay

9.12.2016

– duration: 1h45

– no documents allowed, except one 2-sided sheet of handwritten notes

– a pocket calculator is allowed

– communication devices are not allowed

– the exam invigilators will not answer any technical question during the exam

– readability and style of writing will be part of the grade

– answers should not be written with a pencil

The exam grade follows a linear scale in which each question has the same weight.

1 An Attempt to Fix Double Encryption

We consider a block cipher C over n-bit blocks with a key of n bits. We define EncK1,K2,K3(x) =
CK3(CK1(x) ⊕K2) where ⊕ is the bitwise XOR operation. This defines a new block cipher
with n-bit blocks and 3n-bit keys. We consider key recovery known plaintext attacks against
Enc using r pairs (xi, yi) such that yi = EncK1,K2,K3(xi) for i = 1, . . . , r.

Throughout this exercise, we measure the time complexity in terms of number of C or
C−1 operations.

Q.1 In this question, we assume that K2 is fixed and equal to 0.

Q.1a Show that the equation yi = EncK1,K2,K3(xi) can be written in the form fi(K1) =
gi(K3) for some functions fi and gi.

Clearly,

yi = EncK1,K2,K3(xi)

⇐⇒ yi = CK3(CK1(xi)⊕K2)

⇐⇒ yi = CK3(CK1(xi))

⇐⇒ C−1
K3

(yi) = CK1(xi)

which is of form fi(K1) = gi(K3) with fi(K1) = CK1(xi) and gi(K3) = C−1
K3

(yi).

Q.1b Using the previous question, describe an attack method with time complexity of order
of magnitude 2n. (Justify the complexity.)



We have the meet-in-the-middle attack:

1: initialize the hash table T to empty
2: for all K1 do
3: compute z = f1(K1)
4: if T [z] undefined then
5: add list (K1) in a hash table with key z: T [z]← (K1)
6: else
7: insert K1 in the list T [z]: T [z]← (K1, T [z])
8: end if
9: end for

10: for all K3 do
11: compute z = g1(K3)
12: if T [z] defined then
13: for all K1 in list T [z] do
14: set i← 2
15: while i ≤ r and fi(K1) = gi(K3) do
16: set i← i+ 1
17: if i > r then
18: yield (K1,K3) as output
19: end if
20: end while
21: end for
22: end if
23: end for

It may yield several outputs but it must include the correct one. Spurious outputs
are ruled out by increasing r as it will check for more i for i = 2, . . . , r.
With r = O(1), the attack has time complexity O(2n). Even with larger r, we can see
that the probability the while loop iterates more than a constant time is very small.
So, the number of K3 for which we need many iteration is small. The complexity
remains O(2n).
The optimal value for r is analyzed in the next question.

Q.1c Analyze the probability of success (the probability that it produces the correct solution
and only the correct one). Propose (and justify) a minimal value for r to produce a
good result.

The attack gives the right solution with probability 1, but may give spurious (K1,K3)
solutions. Each wrong (K1,K3) pair is solution to the system fi(K1) = gi(K3) for
i = 1, . . . , r with probability 2−rn. We have 22n − 1 possible bad solutions. The
probability to have no spurious solution is thus (1 − 2−rn)2

2n−1 ≈ e−2(2−r)n
. For

r = 1, this probability is e−2n which is close to 0. For r = 2, this probability is
e−1 ≈ 37%. For r = 3, this probability is e−2−n ≈ 1− 2−n which is very close to 1.
So, r = 3 is enough to recover the right solution and only this one with probability
very close to 1.

Q.2 We now assume that K2 is part of the secret with n bits of entropy.
Q.2a Show that the attack of the previous question can be directly adapted to obtain an

attack of complexity 22n.



We set gi(K2,K3) = C−1
K3

(yi)⊕K2 and have a loop over all (K2,K3) instead of K3.
We obtain a time complexity of 22n.

Q.2b Show that two equations yi = EncK1,K2,K3(xi) and yj = EncK1,K2,K3(xj) imply an
equation which can be written in the form fi,j(K1) = gi,j(K3) for some functions fi,j
and gi,j .

yi = EncK1,K2,K3(xi) and yj = EncK1,K2,K3(xj)

⇐⇒ yi = CK3(CK1(xi)⊕K2) and yj = CK3(CK1(xj)⊕K2)

⇐⇒ C−1
K3

(yi) = CK1(xi)⊕K2 and C−1
K3

(yj) = CK1(xj)⊕K2

=⇒ C−1
K3

(yi)⊕ C−1
K3

(yj) = CK1(xi)⊕ CK1(xj)

which is of form fi,j(K1) = gi,j(K3) with fi,j(K1) = CK1(xi) ⊕ CK1(xj) and
gi,j(K3) = C−1

K3
(yi)⊕ C−1

K3
(yj).

Q.2c Deduce an attack method of complexity 2n and make the analysis like in Q.1c.

Using the previous question, we can use the equations f1,2(K1) = g1,2(K3) to obtain
the correct (K1,K3) and some spurious ones. For each found solution we can com-
pute K2 = C−1

K3
(y1)⊕CK1(x1). Then, we can check if (K1,K2,K3) is consistent with

additional equations EncK1,K2,K3(xi) = yi for i = 3, . . . , r.
The obtained attack has time complexity 2n.
The probability to have no spurious solution is now (1− 2−rn)2

3n−1 ≈ e−2(3−r)n
and

we need r = 4 to have a probability close to 1 to get only the right key.



2 The Hill Cipher

Let d be an integer. We define the Hill cipher with security parameter d as follows. The
message space is Zd

26. Messages are strings of d alphabetical characters encoded into Z26. The
key space is the set of invertible d × d matrices over Z26. Given a key K and a message X,
the encryption of X under K is EncK(X) = K ×X with operations modulo 26.

Q.1 Explain how the decryption works.

As the square matrix K is invertible, we can invert it and we obtain DecK(Y ) =
K−1Y .

Q.2 Propose a chosen plaintext key recovery attack with complexity O(d2) using d chosen
plaintexts. (Justify the complexity.)
HINT: assume that read/write of a Z26 element costs O(1) complexity.

We let Xi = (0, . . . , 0, 1, 0, . . . , 0) where the 1 is at position i. The vector Yi =
K×Xi is the ith column of K. So, using these d chosen plaintexts, by collecting the
ciphertexts we fully reconstruct K. This works with complexity O(d2) (the time to
read K).

Q.3 Given d known plaintext/ciphertext pairs (Xi, Yi) for i = 1, . . . , d, propose a key recovery
attack of complexity O(d4) when d→ +∞ and prove the complexity.
WARNING: d4 is lower than d7!
HINT: assume that the Xi vectors are linearly independent!

We consider all terms in the first row of K as d unknowns. Looking at the first term
of Yi, we obtain

(Yi)1 =
d∑

j=1

K1,j(Xi)j

which is a linear equation. So, with d known plaintext/ciphertext pairs, we obtain d
linear equations in d unknowns. If the Xi are linearly independent, then the system
is regular so we can solve it by inverting a d× d matrix. In other cases, the system
is likely to have a high rank, so we have a small number of solutions that we can
enumerate. Later, we can isolate the right one with additional samples. Inverting
a matrix can be performed with Gauss elimination in cubic time. So, we have an
attack of complexity O(d3) to recover the first row of K. We do this for each row
and obtain a complexity of O(d × d3). This is better than a straightforward attack
looking at the d2 unknowns directly which would work in O(d× d6).



3 Attribute-Based Encryption

The following exercise is inspired from Fuzzy Identity-Based Encryption by Sahai,
and Waters, published in the proceedings of EUROCRYPT’05 pp. 457–473, LNCS
vol. 3494, Springer 2005.

We use an attribute-based encryption scheme. It allows to encrypt a message respective to a
set of attributes att′ so that only people having privileges for at least d of these attributes can
decrypt the ciphertext. People receive a secret sk corresponding to the list of attributes att
that they have. Decryption works only when #(att∩ att′) ≥ d. For instance, an attribute age
could represent people over 25, an attribute licence could represent people owning a driving
licence. To rent a car, customers should get an ignition key M which is encrypted for people
being over 25 and with a driving licence, so with att′ = {age, licence}. Only people with att
including these two privileges should be able to decrypt it and take a car. So, we would set
d = 2. To use this scheme, an authority generates the master secret msk and the master public
key mpk using Setup. Then, it gives attributes att to users and gives them a secret key sk to
allow them to decrypt some ciphertexts. Finally, an encryption function using mpk and a set
of attributes att′ can encrypt messages.

We consider (multiplicative) groups G1 and G2 of prime order p and a bilinear map

e : G1 ×G1 → G2

We recall that it means that we have

e(uavb, w) = e(u,w)ae(v, w)b and e(u, vawb) = e(u, v)ae(u,w)b

for all u, v, w ∈ G1 and a, b ∈ Z. We let g be a generator of G1. We assume that e(g, g) is a
generator of G2. We consider the following algorithms.

Setup(d, n)→ (msk,mpk)
1: pick t1, . . . , tn ∈ Z∗

p and y ∈ Zp at random
2: set Ti = gti , i = 1, . . . , n and Y = e(g, g)y

3: set mpk = (d, T1, . . . , Tn, Y ) and msk = (t1, . . . , tn, y)

Gen(msk, att)→ sk {msk = (t1, . . . , tn, y), att ⊆ {1, . . . , n} non empty}
1: pick some random polynomial q ∈ Zp[x] of degree at most d− 1 such that q(0) = y in Zp

2: set Di = g
q(i)
ti for i ∈ att

3: set sk = (Di)i∈att {the list of all Di for i ∈ att}
Enc(mpk, att′,M)→ ct {mpk = (d, T1, . . . , Tn, Y ), att′ ⊆ {1, . . . , n} non empty, M ∈ G2}
1: pick s ∈ Zp at random
2: set E′ = MY s and Ei = T s

i for i ∈ att′

3: set ct = (E′, (Ei)i∈att′) {E′ and the list of all Ei for i ∈ att′}

Q.1 Let i ̸= j be two attributes. Show that there exist some λi,j , µi,j ∈ Zp such that

∀a, b ∈ Zp λi,j(ai+ b) + µi,j(aj + b) = b (mod p)

We let λi,j =
j

j−i and µi,j = − i
j−i and the property easily follows.



Q.2 In this question, we assume that d = 2.
Specify a decryption algorithm Dec(mpk, sk, ct) → M ′ such that for all M , att, i, j ∈ att
such that i ̸= j, when we run

1: Setup(d, n)→ (msk,mpk)
2: Gen(msk, att)→ sk
3: Enc(mpk, {i, j},M)→ ct
4: Dec(mpk, sk, ct)→M ′

then we always have M ′ = M .

We have

E′

e(Di, Ei)λi,je(Dj , Ej)µi,j
=

E′

e

(
g

q(i)
ti , gtis

)λi,j

e

(
g

q(j)
tj , gtjs

)µi,j

=
E′

e(g, g)q(i)λi,js+q(j)µi,js

=
MY s

e(g, g)ys

= M

So the decryption can work like this.

Q.3 More generally, let I = {i1, . . . , id} ⊆ {1, . . . , n} be a subset of size d. Show that there
exists a function λI : I → Zp such that

∀q ∈ Zp[x] deg(q) ≤ d− 1 =⇒ λI(i1)q(i1) + · · ·+ λI(id)q(id) = q(0) (mod p)

(q is a polynomial of degree up to d− 1).

We can easily show that the solution exists by observing that the linear system

λI(i1)i
j
1 + · · ·+ λI(id)i

j
d = 1j=0

for j = 0, . . . , d− 1 is non-singular.
We can also use the Lagrange interpolation polynomials. Let

LI,ij (x) =
∏

k=1,...,j−1,j+1,...,d

x− ik
ij − ik

We have LI,ij (ij′) = 1j=j′ for all j′ = 1, . . . , d. So, LI,i1(x)q(ii) + · · ·+LI,id(x)q(id)
have the same values as q on I. Since both are polynomials of degree up to d−1 and
both agree on at least d points, they must be the same polynomial. So, they match
on x = 0 which yields LI,i1(0)q(ii) + · · ·+ LI,id(0)q(id) = q(0). Hence,

λI(ij) =
∏

k=1,...,j−1,j+1,...,d

−ik
ij − ik



Q.4 Specify a decryption algorithm Dec(mpk, sk, ct) → M ′ such that for all d, n, M , att, att′

such that #(att ∩ att′) ≥ d, when we run

1: Setup(d, n)→ (msk,mpk)
2: Gen(msk, att)→ sk
3: Enc(mpk, att′,M)→ ct
4: Dec(mpk, sk, ct)→M ′

then we always have M ′ = M .

Let I be an arbitrary subset of att ∩ att′ of cardinality exactly d. We have

E′∏
i∈I e(Di, Ei)λI(i)

=
E′

∏
i∈I e

(
g

q(i)
ti , gtis

)λI(i)

=
E′

e(g, g)s×
∑

i∈I
q(i)λI(i)

=
MY s

e(g, g)ys

= M

So the decryption can work like this.


