Cryptography and Security — Midterm Exam

Solution
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— duration: 1h45

— no documents allowed, except one 2-sided sheet of handwritten notes

— a pocket calculator is allowed

— communication devices are not allowed

— the exam invigilators will not answer any technical question during the exam
— readability and style of writing will be part of the grade

— answers should not be written with a pencil

The exam grade follows a linear scale in which each question has the same weight.

1 An Attempt to Fix Double Encryption

We consider a block cipher C' over n-bit blocks with a key of n bits. We define Encg, k, r,(x) =
Ck;(Ck, () & K2) where @ is the bitwise XOR operation. This defines a new block cipher
with n-bit blocks and 3n-bit keys. We consider key recovery known plaintext attacks against
Enc using r pairs (z;,y;) such that y; = Encg, g, is(2;) fori=1,..., 7.

Throughout this exercise, we measure the time complexity in terms of number of C' or
C~! operations.

Q.1 In this question, we assume that K» is fixed and equal to 0.

Q.1a Show that the equation y; = Encg, k, iy(x;) can be written in the form f;(K;) =
9i(K3) for some functions f; and g;.

Clearly,

vi = Enciy ko 15 (74)
Y = Ck3 (Ck, (7:) © K2)
= yi = Cry (Ck, (7))
= Cxi(yi) = Ok, (2:)

which is of form f;(K1) = gi(K3) with fi(K1) = Ci, (:) and gi(K3) = Ct(yi)-

Q.1b Using the previous question, describe an attack method with time complexity of order
of magnitude 2”. (Justify the complexity.)



We have the meet-in-the-middle attack:

1: initialize the hash table T to empty
2: for all K1 do

3 compute z = f1(K7)

4: if T[z] undefined then

5: add list (K1) in a hash table with key z: T[z] < (K1)
6: else

7: insert K1 in the list T|z]: T[z] < (K1, T[2])

8:  endif

9: end for

10: for all K3 do

11:  compute z = g1(K3)

12:  if T|z] defined then

13: for all Ky in list T[z] do

14: set 1+ 2

15: while i <r and f;(K1) = ¢i(K3) do

16: sett4—1+1

17: if i > r then

18: yield (K1, K3) as output

19: end if

20: end while

21: end for

22:  endif

23: end for

It may yield several outputs but it must include the correct one. Spurious outputs
are ruled out by increasing r as it will check for more i fori=2,...,r.

With r = O(1), the attack has time complezity O(2"). Even with larger r, we can see
that the probability the while loop iterates more than a constant time is very small.
So, the number of K3 for which we need many iteration is small. The complexity
remains O(2").

The optimal value for v is analyzed in the next question.

Q.1c Analyze the probability of success (the probability that it produces the correct solution
and only the correct one). Propose (and justify) a minimal value for r to produce a
good result.

The attack gives the right solution with probability 1, but may give spurious (K1, K3)
solutions. Each wrong (K7, K3) pcm* is solution to the system f;(K1) = g;(K3) for
i = 1,...,r with probability 27"™. We have 2°" — 1 possible bad solutions. The
probabzlzty to have no spurious solution is thus (1 — 2~ 7”")2%_1 ~ e 277" For
r = 1, this probability is e~2" which is close to 0. For r = 2, this probability is

L'~ 37%. For r =3, this probability is e 2" ~ 1 — 27" which is very close to 1.
So, r = 3 is enough to recover the right solution and only this one with probability
very close to 1.

Q.2 We now assume that K» is part of the secret with n bits of entropy.
Q.2a Show that the attack of the previous question can be directly adapted to obtain an
attack of complexity 227,



We set gi(Ka, K3) = C’I}g1 (yi) @ K2 and have a loop over all (K2, K3) instead of Ks.
We obtain a time complexity of 2".

Q.2b Show that two equations y; = Encg, k. i;(2;) and y; = Encg, K, i;(x;) imply an
equation which can be written in the form f; j(K1) = g;;(K3) for some functions f; ;

and G9ij-

yi = Encie, ko ks (i) and  y; = Enci, i, k5 (25)
=y = Ok, (Ck, (2;) ® K2) and  y; = Ok, (Ck, (z;) ® Ka)
= Ci (i) = Ck,(z) @ Ko and  Cil(y;) = Ok, (z5) & Ky
= Crl (1) ® Cxl(y;) = Ck, (2:) @ Ck, ()

which is of f(irm f”(Kll) = ¢;;(K3) with f;;j(K1) = Cg,(z;) ® Ck,(zj) and
9i,j(K3) = Cre, (4i) ® Ok, (y;)-
Q.2c Deduce an attack method of complexity 2 and make the analysis like in Q.1c.

Using the previous question, we can use the equations f12(K1) = g12(K3) to obtain
the correct (K1, K3) and some spurious ones. For each found solution we can com-
pute Ko = Cf};(yl) ®Crk, (x1). Then, we can check if (K1, Ko, K3) is consistent with
additional equations Ency, g, iy (xi) =y; fori=3,...,r.

The obtained attack has time complexity 2™.

The probability to have no spurious solution is now (1 — 2_7"”)23”_1 ~ 207"
we need r = 4 to have a probability close to 1 to get only the right key.

and




2 The Hill Cipher

Let d be an integer. We define the Hill cipher with security parameter d as follows. The
message space is Zgﬁ. Messages are strings of d alphabetical characters encoded into Zsg. The
key space is the set of invertible d x d matrices over Zsg. Given a key K and a message X,
the encryption of X under K is Encx(X) = K x X with operations modulo 26.

Q.1 Explain how the decryption works.

As the square matriz K is invertible, we can invert it and we obtain Decg(Y) =
K'y.

Q.2 Propose a chosen plaintext key recovery attack with complexity O(d?) using d chosen
plaintexts. (Justify the complexity.)
HINT: assume that read/write of a Zyg element costs O(1) complexity.

We let X; = (0,...,0,1,0,...,0) where the 1 is at position i. The vector Y; =
K x X; is the ith column of K. So, using these d chosen plaintexts, by collecting the

ciphertexts we fully reconstruct K. This works with complexity O(d?) (the time to
read K ).

Q.3 Given d known plaintext/ciphertext pairs (X;,Y;) fori = 1,...,d, propose a key recovery
attack of complexity O(d*) when d — 400 and prove the complexity.
WARNING: d* is lower than d’!
HINT: assume that the X; vectors are linearly independent!

We consider all terms in the first row of K as d unknowns. Looking at the first term
of Y;, we obtain

d
(Yo=Y K1;(Xi);
j=1

which is a linear equation. So, with d known plaintext/ciphertext pairs, we obtain d
linear equations in d unknowns. If the X; are linearly independent, then the system
s regular so we can solve it by inverting a d X d matriz. In other cases, the system
is likely to have a high rank, so we have a small number of solutions that we can
enumerate. Later, we can isolate the right one with additional samples. Inverting
a matriz can be performed with Gauss elimination in cubic time. So, we have an
attack of complexity O(d®) to recover the first row of K. We do this for each row
and obtain a complezity of O(d x d3). This is better than a straightforward attack
looking at the d* unknowns directly which would work in O(d x d°).




3 Attribute-Based Encryption

The following exercise is inspired from Fuzzy ldentity-Based Encryption by Sahai,
and Waters, published in the proceedings of EUROCRYPT 05 pp. 457-473, LNCS
vol. 3494, Springer 2005.

We use an attribute-based encryption scheme. It allows to encrypt a message respective to a
set of attributes att’ so that only people having privileges for at least d of these attributes can
decrypt the ciphertext. People receive a secret sk corresponding to the list of attributes att
that they have. Decryption works only when #(att Natt’) > d. For instance, an attribute age
could represent people over 25, an attribute licence could represent people owning a driving
licence. To rent a car, customers should get an ignition key M which is encrypted for people
being over 25 and with a driving licence, so with att’ = {age, licence}. Only people with att
including these two privileges should be able to decrypt it and take a car. So, we would set
d = 2. To use this scheme, an authority generates the master secret msk and the master public
key mpk using Setup. Then, it gives attributes att to users and gives them a secret key sk to
allow them to decrypt some ciphertexts. Finally, an encryption function using mpk and a set
of attributes att’ can encrypt messages.
We consider (multiplicative) groups G; and Gy of prime order p and a bilinear map

62G1XG1—>G2

We recall that it means that we have

b b b

e(u®, w) = e(u, w)%(v,w)’ and e(u,v?w’) = e(u,v)%(u, w)
for all u,v,w € G1 and a,b € Z. We let g be a generator of G;. We assume that e(g, g) is a
generator of Go. We consider the following algorithms.
Setup(d, n) — (msk, mpk)

1: pick t1,...,t, € Zy, and y € Z, at random

2:set Ty =gl i=1,...,nand Y = e(g,g)¥

3: set mpk = (d,T1,...,T,,Y) and msk = (t1,...,tn,¥)
Gen(msk, att) — sk {msk = (¢1,...,tn,y), att C {1,...,n} non empty}

1: pick some random polynomial ¢ € Z[z] of degree at most d — 1 such that ¢(0) =y in Z,
a(i)
2: set D; =g % fori € att

3: set sk = (D;);catt {the list of all D; for ¢ € att}
Enc(mpk, att’, M) — ct  {mpk = (d,T1,...,T,,,Y), att’ C {1,...,n} non empty, M € Gy}
1: pick s € Z;, at random
2: set B/ = MY* and E; = T? for i € att/
3: set ct = (E', (E))icarr) {F' and the list of all E; for i € att’}

Q.1 Let 7 # j be two attributes. Show that there exist some A; ;, 1; ; € Z, such that

Va,b € Z, Aij(ai +b) + p;j(aj +b) =b (mod p)

We let \; j = ]JT and p; j = —-L and the property easily follows.
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Q.2 In this question, we assume that d = 2.
Specify a decryption algorithm Dec(mpk, sk, ct) — M’ such that for all M, att, i, € att
such that ¢ # j, when we run
1. Setup(d,n) — (msk, mpk)
2: Gen(msk, att) — sk
3: Enc(mpk, {i,7}, M) — ct
4: Dec(mpk, sk, ct) — M’
then we always have M’ = M.

We have
£ E'
. A . RY 7R = i i j Hi,j
e(Du EZ) ’]e(D% E])'u J e (gqt(i)’gtis) N e <gqt(;)’gtjs> !
E/
- e(g’ g)Q(i))‘i,js+Q(j)ﬂi,js
_ MY®
e(g, g)®
=M
So the decryption can work like this.

Q.3 More generally, let I = {i1,...,iq} € {1,...,n} be a subset of size d. Show that there
exists a function A\; : I — Z, such that

Vg € Zy[z]  deg(q) < d—1== A(i1)q(ir) + -+ + A1(ia)q(ia) = q(0) (mod p)

(q is a polynomial of degree up to d — 1).

We can easily show that the solution exists by observing that the linear system
Ar(in)i] + -+ + Arlia)i?, = 1j—o

for 7=0,...,d —1 is non-singular.
We can also use the Lagrange interpolation polynomials. Let

xr—1
Lrs; (@) = 11 i —i
k=1,..j—1,j+1,...d 3 'k

We have Ly;;(ij) = 1j—j for all j' =1,...,d. So, Ly (x)q(i;) + - - + L1, (x)q(iq)
have the same values as q on I. Since both are polynomials of degree up to d—1 and
both agree on at least d points, they must be the same polynomial. So, they match
on x = 0 which yields Ly;, (0)q(i;) + -+ Lr,;,(0)q(iq) = q(0). Hence,

Ar(ij) = II ..__ik.




Q.4 Specify a decryption algorithm Dec(mpk, sk, ct) — M’ such that for all d, n, M, att, att’
such that #(att N att’) > d, when we run
1. Setup(d,n) — (msk, mpk)
2: Gen(msk, att) — sk
3: Enc(mpk, att’, M) — ct
4: Dec(mpk, sk, ct) — M’
then we always have M’ = M.

Let I be an arbitrary subset of att N att’ of cardinality exactly d. We have

E' B
[ier e(Dy, E)MO ~ a0 (@)
el iy L4 Hi€I e (g t; ,gti5>
B
e(g,g)sxzia q(i)Ar(3)
MY*

e(g,9)v*
- M

So the decryption can work like this.




