
Cryptography and Security — Final Exam

Serge Vaudenay

29.1.2018

– duration: 3h
– no documents allowed, except one 2-sided sheet of handwritten notes
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade

1 Collision on Sponge-Based Hash Functions

The sponge is a construction for cryptographic hashing. It uses a cryptographic permutation
f : {0, 1}b → {0, 1}b. To instantiate the sponge with f , we have to pick the parameters r
(called the “rate”) and c (called the “capacity”), such that r+ c = b. The sponge also allows
to set an arbitrary length h of the output. We fix f , c and h and set H = Sponge[f, c, h](M)
defined as follows. We first define pad(a) = 10r−(a+2 mod r)1 for an integer a (i.e. the bitstring
consisting of one bit 1 followed with r − (a + 2 mod r) bits 0, then one bit 1: this is not
a power of 10). Here, |m| denotes the length of the bitstring m. We use the notation ∥ for
the concatenation of bitstrings. To compute the hash H(m) of a message m (specified as a
bitstring), we use the following pseudocode:

Input: m
1: M ← m∥pad(|m|) {pad(|m|) = 10r−(|m|+2 mod r)1}
2: ℓ← |M |/r
3: split M = M1∥M2∥ · · · ∥Mℓ {split M into ℓ blocks of r bits M1, . . . ,Mℓ}
4: S ← 0b

5: for i = 1 to ℓ do
6: S ← S ⊕ (Mi∥0c)
7: S ← f(S)
8: end for
9: Z ← empty string

10: while |Z| < h do
11: Z ← Z∥leftr(S)
12: S ← f(S)
13: end while
14: return lefth(Z)

where leftr(Z) returns the r leftmost bits of a binary string Z. (We similarly define rightc(Z) so
that Z = leftr(Z)∥rightc(Z) whenever Z is of b bits.) We see that the rate impacts performance,
the bigger it is, the less times we need to call f to hash a message. Now we investigate how
the capacity influences the security of a sponge-based hash function.

Q.1 Say why it is called a sponge and in which well-known algorithm is this construction used.

2

Q.2 Briefly describe a generic collision-search attack on the hash function H. What is its time
and memory complexity? (It is convenient to measure the time complexity in computations
which are equivalent to one call of f .)

Q.3 Prove that given two randomly chosen strings x ̸= x′ such that |x| = |x′| = b, the
probability that rightc(f(x)) = rightc(f(x

′)) is about 2−c. (To make this estimation, you
can assume that f is a “random permutation”.)

3

Q.4 Describe an algorithm that will find two x ̸= x′ such that |x| = |x′| = b and rightc(f(x)) =
rightc(f(x

′)). What is its time and memory complexity?

Q.5 Assume that h > c. Describe a collision-search attack on the hash functionH = Sponge[f, c, h](M)
that is more efficient than the generic collision search from Q.2. What is its time and mem-
ory complexity?
HINT: You can assume that after processing ⌈c/2r⌉ randomly chosen message blocks, the
state S behaves as f(x) with a random input x.

4

2 LPN with Extreme Noise Parameters

We consider a set of parameters consisting of an integer k and a probability τ . We assume
that a secret vector s ∈ {0, 1}k is initially selected with a uniform distribution. We define a
source S which generates some random pairs (v, b) as follows: first, the source picks a random
vector v ∈ {0, 1}k with a uniform distribution and (independently) a random bit e such that
Pr[e = 1] = τ . Then, the source produces b = ⟨v, s⟩ ⊕ e where we use the notation ⟨., .⟩ for
the dot product in Zk

2 defined by

⟨v, s⟩ = (v1s1 + · · ·+ vksk) mod 2

and we use the notation ⊕ for the addition in Z2. The components of v and s are the vi
and si for i = 1, . . . , k, respectively. The output (v, b) of the source S is called a sample.
Upon a query to S, the source produces a sample. By making a query, we get only the freshly
generated sample (v, b) but we see neither the secret s nor the noise bit e.

The Learning Parity with Noise problem (LPN) consists of designing an algorithmAS(k, τ)
which recovers the secret vector s by only querying the source S and knowing the parameters
k and τ , with a “large enough” probability of success (e.g. at least 50%):

Pr[AS(k, τ)→ s] ≥ 1

2

We assume that τ is a function of k and we measure the complexity ofA with a time complexity
and a query complexity. Both are asymptotic in terms of k. The time complexity is the
asymptotic expected complexity in number of binary operations. The query complexity is
the number of queries to the source. The LPN problem is often used in cryptography with τ
between cte√

k
and 1

2 −
cte
k , for a constant cte, as it is believed to be hard (even with the help of

quantum computers!). In this exercise, we investigate values of τ which are not in this range.

Q.1 For τ = 0, prove that the LPN problem is easy to solve: there exists a polynomially
bounded (in terms of k) algorithm to solve it. Briefly describe this algorithm and its
complexity (time and query).

5

Q.2 For τ = 1
2 , prove that the LPN problem is impossible to solve.

HINT: first show that the source is uniform whatever s.

Q.3 For τ = O(1k), we show in the next questions that the LPN problem is still easy to solve.
Q.3a Prove that we can easily get k samples (vi, bi), i = 1, . . . , k such that all vi are linearly

independent. Briefly describe this algorithm with a pseudocode and its complexity
(time and query).

6

Q.3b We denote bi = ⟨vi, s⟩ ⊕ ei. Prove that the number X of i ∈ {1, . . . , k} such that
ei = 1 is a random variable which has an expected value equal to kτ and a variance
of kτ(1− τ).

7

Q.3c By using the previous questions, prove that for τ = O(1k) we can recover s from the
obtained samples. Briefly describe an algorithm with a pseudocode and its complexity
(time and query).
HINT: there may be an exhaustive search on a tiny space.
HINT2: Pr[X > kτ] ≤ 37%.

8

3 Cross-Authentication based on Short Authenticated Strings

Let r and k be two integers.
We consider a commitment scheme commit with which we commit to (mA,K) (where mA

is a message andK is a hash key) by picking some coins ρ and producing c = commit(mA,K; ρ)
and we open the commitment by releasing (mA,K, ρ).

We also consider a strongly universal hash function family hK from the set of all finite
bitstrings to {0, 1}r, defined by a key K ∈ {0, 1}k. This is such that for any fixed m,m′

such that m ̸= m′, the pair (hK(m), hK(m′)) is uniformly distributed in ({0, 1}r)2 when
K ∈ {0, 1}k is uniformly distributed.

We define the following SAS-based message cross-authentication protocol: if Alice wants
to send the message mA and Bob wants to send the message mB, they run the following
protocol. Communications with the authenticate tags are authenticated (i.e. sent through a
special authenticated channel) in the sense that an adversary cannot create or modify the
message. Other communications are done through an insecure channel which may be corrupted
by an adversary. For this reason, we put a hat on notations to designate received values. For
instance, if Alice sends K to Bob through an insecure channel, Bob receives K̂ which is equal
to K only if the adversary lets the message unchanged.

Alice Bob
input: mA input: mB

pick K ∈U {0, 1}k pick R ∈U {0, 1}r
pick ρ

c← commit(mA,K; ρ)
mA,c−−−−−−−−−−−−−−→
mB ,R←−−−−−−−−−−−−−−
K,ρ−−−−−−−−−−−−−−→ check ĉ = commit(m̂A, K̂; ρ̂)

compute SAS← R̂⊕ hK(m̂B)
authenticate(SAS)−−−−−−−−−−−−−−→ verify SAS = R⊕ hK̂(mB)

verify SAS = R̂⊕ hK(m̂B)
authenticate(SAS)←−−−−−−−−−−−−−− compute SAS← R⊕ hK̂(mB)

output: m̂B output: m̂A

In the considered attacks in this exercise, we have a (wo)man-in-the-middle (let’s call her Eve)
who controls the (unauthenticated) channels and substitutes all variables by some variants
with a hat that she computes. She wants that for anymA,mB, m̂A, m̂B, there exists an efficient
way to make Alice and Bob succeed (i.e., both verifications succeed), with input/output
mA/m̂B andmB/m̂A, respectively. If not specified otherwise, the attack is supposed to succeed
with probability 100%. We assume that h and commit are easily computable. We assume that r
is small so that a loop with 2r iterations is considered as efficient. Eve can usemA,mB, m̂A, m̂B

as input before the attack starts.

9

Q.1 Explain what this protocol could be used for and a typical use case.

Q.2 (Case of a non-hiding commitment.) If there exists an efficiently implementable function
reveal such that for all m,K, ρ, we have

reveal(m, commit(m,K; ρ)) = K

prove that there is an attack.

10

Q.3 (Case of a modified protocol.) If we modify the protocol by removing the commitment (as
shown below), prove that there is an attack using a loop of 2r iterations.

pick K ∈U {0, 1}k
mA−−−−−−−−−−−−−−→ pick R ∈U {0, 1}r
mB ,R←−−−−−−−−−−−−−−
K−−−−−−−−−−−−−−→

SAS = R̂⊕ hK(m̂B)
authenticate(SAS)←−−−−−−−−−−−−−→ SAS = R⊕ hK̂(mB)

Q.4 (Case of a non-binding commitment.) If there exists an efficiently implementable function
equivocate returning random coins ρ such that for all c, m̂, K̂, we have

commit(m̂, K̂; equivocate(c, m̂, K̂)) = c

prove that there is an attack using a loop of 2r iterations.

11

Q.5 (General case: attack with success probability 2−r.) Prove that there is an attack which
succeeds with probability 2−r.

12

