
Cryptography and Security — Final Exam

Solution

Serge Vaudenay

29.1.2018

– duration: 3h
– no documents allowed, except one 2-sided sheet of handwritten notes
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade

The exam grade follows a linear scale in which each question has the same weight.

1 Collision on Sponge-Based Hash Functions

The sponge is a construction for cryptographic hashing. It uses a cryptographic permutation
f : {0, 1}b → {0, 1}b. To instantiate the sponge with f , we have to pick the parameters r
(called the “rate”) and c (called the “capacity”), such that r+ c = b. The sponge also allows
to set an arbitrary length h of the output. We fix f , c and h and set H = Sponge[f, c, h](M)
defined as follows. We first define pad(a) = 10r−(a+2 mod r)1 for an integer a (i.e. the bitstring
consisting of one bit 1 followed with r − (a + 2 mod r) bits 0, then one bit 1: this is not
a power of 10). Here, |m| denotes the length of the bitstring m. We use the notation ∥ for
the concatenation of bitstrings. To compute the hash H(m) of a message m (specified as a
bitstring), we use the following pseudocode:

Input: m
1: M ← m∥pad(|m|) {pad(|m|) = 10r−(|m|+2 mod r)1}
2: ℓ← |M |/r
3: split M = M1∥M2∥ · · · ∥Mℓ {split M into ℓ blocks of r bits M1, . . . ,Mℓ}
4: S ← 0b

5: for i = 1 to ℓ do
6: S ← S ⊕ (Mi∥0c)
7: S ← f(S)
8: end for
9: Z ← empty string

10: while |Z| < h do
11: Z ← Z∥leftr(S)
12: S ← f(S)
13: end while
14: return lefth(Z)

where leftr(Z) returns the r leftmost bits of a binary string Z. (We similarly define rightc(Z) so
that Z = leftr(Z)∥rightc(Z) whenever Z is of b bits.) We see that the rate impacts performance,
the bigger it is, the less times we need to call f to hash a message. Now we investigate how
the capacity influences the security of a sponge-based hash function.

Q.1 Say why it is called a sponge and in which well-known algorithm is this construction used.

The loop on step 5–8 is called the absorbing phase, as it absorbs the Mi blocks. The
loop on step 10–13 is called the squeezing phase, as we extract output from the state.
This is used in the SHA-3 hash standard (the Keccak hash function).

Q.2 Briefly describe a generic collision-search attack on the hash function H. What is its time
and memory complexity? (It is convenient to measure the time complexity in computations
which are equivalent to one call of f .)

To find a collision for a hash function H : {0, 1}∗ → {0, 1}h, we select a constant θ
and we pick N = θ · 2h/2 messages m1, . . . ,mN . For each i = 1, . . . , N we compute
Ti = H(mi) and store (Ti,mi) in a hash table until there are two records (T,m) and
(T,m′) with colliding hashes. We output m,m′. The probability of success of this
attack is

p ≈ 1−
(
1− 2−h

)N2

2 ≈ 1− e−
θ2

2

The time and memory complexity are both O(2h/2).

Q.3 Prove that given two randomly chosen strings x ̸= x′ such that |x| = |x′| = b, the
probability that rightc(f(x)) = rightc(f(x

′)) is about 2−c. (To make this estimation, you
can assume that f is a “random permutation”.)

If we assume that f behaves “randomly”, using the law of total probability, we have
that

Pr
[
rightc(f(x)) = rightc(f(x

′))
]

=
∑

z∈{0,1}c
Pr

[
rightc(f(x)) = z | rightc(f(x′)) = z

]
· Pr

[
rightc(f(x

′)) = z
]

=
∑

z∈{0,1}c

2r − 1

2b − 1
· 2

r

2b

=
2r − 1

2b − 1
≈ 1

2c
.

The probabilities that an image under f has the rightmost c bits equal to z are derived
by counting how many possible values of f(x) (or f(x′)) end with z versus how many
possible values we have in total.

Q.4 Describe an algorithm that will find two x ̸= x′ such that |x| = |x′| = b and rightc(f(x)) =
rightc(f(x

′)). What is its time and memory complexity?

We can define F (x) = rightc(f(x)) and mount the generic collision search on F
from Q.2. As the output size of F is c bits, we run the attack with θ · 2c/2 messages,
so the time and memory complexities will both be O(2c/2).

2

Q.5 Assume that h > c. Describe a collision-search attack on the hash functionH = Sponge[f, c, h](M)
that is more efficient than the generic collision search from Q.2. What is its time and mem-
ory complexity?
HINT: You can assume that after processing ⌈c/2r⌉ randomly chosen message blocks, the
state S behaves as f(x) with a random input x.

The idea of the attack is to find a collision in the rightmost c bits of the state S and
then force a collision on the rest of the state using the message block.
Using the hint and the previous question, we pick θ · 2c/2 random strings mi of at
least r · ⌈c/2r⌉ bits. For each i = 1, . . . , θ · 2c/2, we parse mi into blocks (without
padding!) and partially evaluate the sponge to obtain the final state Si, compute and
store (leftr(Si), rightc(Si),mi) in a hash table until there are two entries (L,R,m)
and (L′, R,m′) with colliding R.
We output m̄ = m∥L and m̄′ = m′∥L′ so that the final state becomes f(0r∥R) for
both messages. As both messages have the same length, they will be subject to the
same padding so will produce the same states. We will have H(m̄) = H(m̄′), because
the internal state of the sponge after processing all-but-the-last blocks will share the
rightmost c bits for both m̄ and m̄′. The complexity will be O(2c/2), which is less
than the complexity of the generic collision search because h > c.

3

2 LPN with Extreme Noise Parameters

We consider a set of parameters consisting of an integer k and a probability τ . We assume
that a secret vector s ∈ {0, 1}k is initially selected with a uniform distribution. We define a
source S which generates some random pairs (v, b) as follows: first, the source picks a random
vector v ∈ {0, 1}k with a uniform distribution and (independently) a random bit e such that
Pr[e = 1] = τ . Then, the source produces b = ⟨v, s⟩ ⊕ e where we use the notation ⟨., .⟩ for
the dot product in Zk

2 defined by

⟨v, s⟩ = (v1s1 + · · ·+ vksk) mod 2

and we use the notation ⊕ for the addition in Z2. The components of v and s are the vi
and si for i = 1, . . . , k, respectively. The output (v, b) of the source S is called a sample.
Upon a query to S, the source produces a sample. By making a query, we get only the freshly
generated sample (v, b) but we see neither the secret s nor the noise bit e.

The Learning Parity with Noise problem (LPN) consists of designing an algorithmAS(k, τ)
which recovers the secret vector s by only querying the source S and knowing the parameters
k and τ , with a “large enough” probability of success (e.g. at least 50%):

Pr[AS(k, τ)→ s] ≥ 1

2

We assume that τ is a function of k and we measure the complexity ofA with a time complexity
and a query complexity. Both are asymptotic in terms of k. The time complexity is the
asymptotic expected complexity in number of binary operations. The query complexity is
the number of queries to the source. The LPN problem is often used in cryptography with τ
between cte√

k
and 1

2 −
cte
k , for a constant cte, as it is believed to be hard (even with the help of

quantum computers!). In this exercise, we investigate values of τ which are not in this range.

Q.1 For τ = 0, prove that the LPN problem is easy to solve: there exists a polynomially
bounded (in terms of k) algorithm to solve it. Briefly describe this algorithm and its
complexity (time and query).

If τ = 0, each sample gives a random Z2-linear equation which is satisfied by s. Using
a bit more than k samples, it is likely that we find k linearly independent equations,
so obtain a linear system which uniquely characterizes s. This is a system of k
independent linear equations in k unknowns. We solve it by Gaussian elimination.
Straightforward implementations have complexity O(k3). The number of samples is
O(k).

Q.2 For τ = 1
2 , prove that the LPN problem is impossible to solve.

HINT: first show that the source is uniform whatever s.

4

For τ = 1
2 , we know from the construction that (v, e) is uniformly distributed in Zk+1

2 .
For any bit β, we have Pr[b = β|v] = Pr[e = ⟨v, s⟩ ⊕ β|v] = Pr[e = ⟨v, s⟩ ⊕ β] = 1

2 .
So, b is independent from v and uniformly distributed. Hence, S is a uniform source.
Because it is uniform, it is independent from s.
An arbitrary algorithm A fed with samples from the source will produce an output
with a given distribution. If the secret s is changed into some s′, the distribution of
the source is exactly the same, so A will produce an output with same distribution.
Hence, the output of A is independent from s. Since s is uniformly distributed, the
probability that the output of A equals s is 2−k. Therefore, it cannot succeed except
with the tiny probability of 2−k.

Q.3 For τ = O(1k), we show in the next questions that the LPN problem is still easy to solve.

Q.3a Prove that we can easily get k samples (vi, bi), i = 1, . . . , k such that all vi are linearly
independent. Briefly describe this algorithm with a pseudocode and its complexity
(time and query).

Assuming that we have n < k linearly independent v vectors v1, . . . , vn, we can get
fresh samples (v, b) until we have one v which is linearly independent from v1, . . . , vn.
We can denote it vn+1. The previous ones v1, . . . , vn span a vector space of dimension
n, so of 2n elements. A new one v is dependent with probability 2n/2k ≤ 1

2 . So, with a
constant number of trials O(1), we can find an independent one vn+1. The algorithm
starts with n = 0 and iterates the above principle. Clearly, it needs O(k) samples.
Instead of testing linear independence at every step, we can directly generate these
samples then extract k linearly independent vectors from the pool with complexity
O(k3), by a Gaussian algorithm.

Q.3b We denote bi = ⟨vi, s⟩ ⊕ ei. Prove that the number X of i ∈ {1, . . . , k} such that
ei = 1 is a random variable which has an expected value equal to kτ and a variance
of kτ(1− τ).

This number X of i is simply X = e1 + · · · + ek (with addition over Z). Using
linearity, we have E(X) = k · E(ei) = kτ . Since all ei are linearly independent, we
can compute the variance V (X) = k · V (ei). We have

V (ei) = E(e2i)− E(ei)
2 = E(ei)− E(ei)

2 = τ − τ2 = τ(1− τ)

because e2i = ei. The standard deviation is
√
V (X) =

√
kτ(1− τ). This is a binomial

distribution.

Q.3c By using the previous questions, prove that for τ = O(1k) we can recover s from the
obtained samples. Briefly describe an algorithm with a pseudocode and its complexity
(time and query).

HINT: there may be an exhaustive search on a tiny space.

HINT2: Pr[X > kτ] ≤ 37%.

5

Let c = kτ . We know that c = O(1). Let e = (e1, . . . , ek). This vector has a weight
around kτ = c, with standard deviation less than

√
c. We take an arbitrary constant

u > 0. The vector e has weight bounded by w = c+u
√
c with probability greater than

1
2 . (More precisely, with u = 0, we have w = c and the probability that the weight
exceed w is bounded by 37%, due to the Chernoff-Hoeffding bound.) The set of all
e with weight bounded by w has a cardinality bounded by kw. This is polynomially
bounded. We can do an exhaustive search on this set, so essentially guess the vector
e. If we guess e, we solve s from a system of linear equations. Once s is obtained, we
can check consistency with more samples. So, we can recover s with a polynomially
bounded algorithm. Our algorithm works as follows:

1: collect O(k) samples
2: extract (v1, b1), . . . , (vk, bk) such that v1, . . . , vk are linearly independent
3: collect k new samples (v′i, b

′
1), . . . , (v

′
k, b

′
k)

4: for all e ∈ {0, 1}k with weight bounded by w do
5: solve the system bi ⊕ ei = ⟨vi, s̄⟩ in s̄
6: count w′: how many i are such that b′i ⊕ ⟨v′i, s̄⟩ = 1
7: if w′ ≤ w then
8: stop and yield s̄
9: end if

10: end for

Here, consistency is checked by measuring that with k independent samples, the
weight w′ of the error vector is also bounded by w.

6

3 Cross-Authentication based on Short Authenticated Strings

The following exercise is inspired from SAS-Based Authenticated Key Agreement
by Pasini and Vaudenay, published in the proceedings of PKC 2006.

Let r and k be two integers.

We consider a commitment scheme commit with which we commit to (mA,K) (where mA

is a message andK is a hash key) by picking some coins ρ and producing c = commit(mA,K; ρ)
and we open the commitment by releasing (mA,K, ρ).

We also consider a strongly universal hash function family hK from the set of all finite
bitstrings to {0, 1}r, defined by a key K ∈ {0, 1}k. This is such that for any fixed m,m′

such that m ̸= m′, the pair (hK(m), hK(m′)) is uniformly distributed in ({0, 1}r)2 when
K ∈ {0, 1}k is uniformly distributed.

We define the following SAS-based message cross-authentication protocol: if Alice wants
to send the message mA and Bob wants to send the message mB, they run the following
protocol. Communications with the authenticate tags are authenticated (i.e. sent through a
special authenticated channel) in the sense that an adversary cannot create or modify the
message. Other communications are done through an insecure channel which may be corrupted
by an adversary. For this reason, we put a hat on notations to designate received values. For
instance, if Alice sends K to Bob through an insecure channel, Bob receives K̂ which is equal
to K only if the adversary lets the message unchanged.

Alice Bob
input: mA input: mB

pick K ∈U {0, 1}k pick R ∈U {0, 1}r
pick ρ

c← commit(mA,K; ρ)
mA,c−−−−−−−−−−−−−−→
mB ,R←−−−−−−−−−−−−−−
K,ρ−−−−−−−−−−−−−−→ check ĉ = commit(m̂A, K̂; ρ̂)

compute SAS← R̂⊕ hK(m̂B)
authenticate(SAS)−−−−−−−−−−−−−−→ verify SAS = R⊕ hK̂(mB)

verify SAS = R̂⊕ hK(m̂B)
authenticate(SAS)←−−−−−−−−−−−−−− compute SAS← R⊕ hK̂(mB)

output: m̂B output: m̂A

In the considered attacks in this exercise, we have a (wo)man-in-the-middle (let’s call her Eve)
who controls the (unauthenticated) channels and substitutes all variables by some variants
with a hat that she computes. She wants that for anymA,mB, m̂A, m̂B, there exists an efficient
way to make Alice and Bob succeed (i.e., both verifications succeed), with input/output
mA/m̂B andmB/m̂A, respectively. If not specified otherwise, the attack is supposed to succeed
with probability 100%. We assume that h and commit are easily computable. We assume that r

7

is small so that a loop with 2r iterations is considered as efficient. Eve can usemA,mB, m̂A, m̂B

as input before the attack starts.

Q.1 Explain what this protocol could be used for and a typical use case.

The protocol could be used to mutually authenticate ephemeral Diffie-Hellman public
keys mA and mB. This way, we would have an authenticated key agreement pro-
tocol. It could be used to initialize a secure association. Similar protocols are used
in Bluetooth pairing, like the Simple Secure Pairing based on Numeric Comparison.
The SAS is typically a 6-digit number (so r ≈ 30), displayed by device A and device
B, and a human operator check that they are equal to authenticate them.

Q.2 (Case of a non-hiding commitment.) If there exists an efficiently implementable function
reveal such that for all m,K, ρ, we have

reveal(m, commit(m,K; ρ)) = K

prove that there is an attack.

After Alice releases mA, c, Eve computes K = reveal(m, c) then forwards the mes-
sages to Bob but substitutes m̂A to mA and ĉ = commit(m̂A,K; ρ̂) to c. So, K̂ = K.
After Bob releases mB, R, Eve sends m̂B and

R̂ = R⊕ hK(mB)⊕ hK(m̂B)

to Alice. Alice then sends mA,K, ρ which are replaced with m̂A,K, ρ̂ by Eve. Alice
computes

SAS = R̂⊕ hK(m̂B) = R⊕ hK(mB)

and Bob computes the same. As the commitment verifies well on Bob’s side, the
protocol always completes.

Q.3 (Case of a modified protocol.) If we modify the protocol by removing the commitment (as
shown below), prove that there is an attack using a loop of 2r iterations.

pick K ∈U {0, 1}k
mA−−−−−−−−−−−−−−→ pick R ∈U {0, 1}r
mB ,R←−−−−−−−−−−−−−−
K−−−−−−−−−−−−−−→

SAS = R̂⊕ hK(m̂B)
authenticate(SAS)←−−−−−−−−−−−−−→ SAS = R⊕ hK̂(mB)

Eve picks some random R̂. She substitutes all messages in the modified protocol
following the name of the variables. Then, she does a preimage attack on the function
f defined by f(K̂) = hK̂(mB) to find K̂ such that f(K̂) = R ⊕ R̂ ⊕ hK(m̂B).
This phase needs roughly 2r trials, which is simple if r is small. This allows her to
substitute K̂ in the last message and to finalize the attack. The two SAS will match.

8

Q.4 (Case of a non-binding commitment.) If there exists an efficiently implementable function
equivocate returning random coins ρ such that for all c, m̂, K̂, we have

commit(m̂, K̂; equivocate(c, m̂, K̂)) = c

prove that there is an attack using a loop of 2r iterations.

Eve picks some random ĉ and R̂. She substitute all messages following the name
of the variables. Then, she does a preimage attack on the function f defined by
f(K̂) = hK̂(mB) to find K̂ such that f(K̂) = R ⊕ R̂ ⊕ hK(m̂B). This phase needs
roughly 2r trials, which is simple if r is small. Finally, she computes

ρ̂ = equivocate(ĉ, m̂A, K̂)

to finalize the attack. The two SAS will match.

Q.5 (General case: attack with success probability 2−r.) Prove that there is an attack which
succeeds with probability 2−r.

Eve picks some random K̂, ρ̂, R̂. She computes ĉ = commit(m̂A, K̂; ρ̂) then do all
substitutions. The SAS computed by Alice and Bob will match with probability 2−r

and the attack will work.

9

