
Cryptography and Security — Midterm Exam

Solution

Serge Vaudenay

23.11.2017

– duration: 1h45
– no documents allowed, except one 2-sided sheet of handwritten notes
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade
– answers should not be written with a pencil

The exam grade follows a linear scale in which each question has the same weight.

1 RSA over Zpαqβ

We consider a variant of RSA in which the modulus is selected of form n = pαqβ and two
different large prime numbers p and q. As usual, the public key is a pair (n, e) and the secret
key is a pair (n, d). We assume that α and β are two constants in this cryptosystem.

Q.1 Explain the encryption algorithm Enc, the decryption algorithm Dec, and the key
generation algorithm Gen. What relation must exist between the public key and the
secret key?

Encryption of x with public key (e, n): compute xe mod n using the square-and-
multiply algorithm.
Decryption of y with secret key (d, n): compute xd mod n using the square-and-
multiply algorithm.
Key generation algorithm: generate two different large prime numbers p and q by
trials using a primality test, compute n = pαqβ, φ(n) = (p−1)pα−1(q−1)qβ−1, pick
a random e until it is coprime with φ(n) (use the Euclid algorithm to check), and
compute the inverse d = e−1 mod φ(n) (use the extended Euclid algorithm for that).
We must have ed mod φ(n) = 1.

Q.2 Prove that for all x ∈ Z∗
n we have Decn,d(Encn,e(x)) = x but that there exist some (rare)

x ∈ Zn such that Decn,d(Encn,e(x)) ̸= x when e > 1.

We have (xe mod n)d mod n = xed mod n = x1+kφ(n) mod n for some integer k. If
x ∈ Z∗

n, we have x
φ(n) mod n = 1 due to the Lagrange theorem. So, (xe mod n)d mod

n = x.
For x = pα−1 and e > 1, we have xe mod pα = 0. So, we cannot have (xe mod n)d ≡
x (mod pα). So, we cannot have (xe mod n)d mod n = x.

Q.3 If either α = 0 or β = 0, prove that this cryptosystem is insecure. Describe an attack and
show it has a low complexity.

Assume for instance that β = 0. So, n = pα. We can thus compute α
√
n = p. This

computation can be done in time O((log n)3).
Even though α was not known, it must be less than the size of n, so it can be found
by exhaustive search (until α

√
n is an integer) in O(log n) trials.

Once we have p and α, we can compute φ(n) = pα−1(p − 1) and the secret key by
d = e−1 mod φ(n) in time O((log n)2).
Overall, the complexity is O((log n)4) if α is unknown and O((log n)3) otherwise.
This is a low complexity.

Q.4 If x2 ≡ y2 (mod n), x ̸≡ y (mod n), and x ̸≡ −y (mod n), formally prove that
gcd(x− y, n) is a nontrivial factor of n.

gcd(x− y, n) is always a factor of n, but it can be a trivial one (i.e. 1 or n).
If this gcd is n, this means that x ≡ y (mod n) which contradicts the assumption.
So, it remains to show that this factor cannot be 1. If it was 1, then x − y would
be invertible. But multiplying its inverse by 0 = x2 − y2 = (x− y)(x+ y) (mod n)
would imply that 0 = x+ y (mod n) which contradicts x ̸≡ −y (mod n).

Q.5 Explain that the ability to compute square roots in Z∗
n allows to factor n efficiently. (Note

that we must find p and q, not only a non-trivial factor.)

If we sample a random x ∈ Z∗
n and compute x2 mod n, we obtain a random quadratic

residue of Z∗
n and one of its square roots x at random. There are (at least) four square

roots (we have actually exactly four, we only need to know we have at least four) and
we know x and −x. So, with probability at least 1

2 , the square root subroutine will
return a new square root. With the previous question, we deduce a nontrivial factor
n′ of n. If n′ is not enough to fully factor n, we can repeat the procedure modulo n′

to find a nontrivial factor of n′. Eventually, we recover either p or q and it is enough
to recover pα and qβ from n, then deduce the other prime factor using Q.3.

Q.6 Further prove that the knowledge of any multiple of λ(n) allows to factor n efficiently.

If m is a multiple of λ(n), we have xm mod n = 1 for any x ∈ Z∗
n. We write

m = 2kt with t odd. Note that λ(n) = lcm(λ(pα), λ(qβ)) is even because λ(pα) is
even, because (−1)λ(pα) mod pα must be equal to 1. We deduce that xt has one of its
iterative squares xt, (xt)2, (xt)4, . . . equal to 1. The last value which is not 1 in this
iterative squares is a square root of 1 which it not 1. With some constant probability,
it is not −1 either. So, we deduce a nontrivial factor of n using Q.4.

2 A New Meet-in-the-Middle

Let x 7→ Ck(x) be a block cipher encryption using a key k and y 7→ C−1
k (y) be the corre-

sponding block cipher decryption. We assume that k, x, and y live in the space {0, 1}ℓ, for
a given integer ℓ. The key k is uniformly distributed. In this exercise, we define new block
ciphers using longer keys. We do analysis in a known plaintext attack setting: we assume the
adversary gets m pairs (xi, yi) consisting of a random xi and its encryption yi. The purpose is
to do a key recovery with probability of success close to 1. We say that the attack succeeds if
it stops with the correct secret key (and only the correct one) as output. In this exercise, we
will look for attacks with a variable m and study how to select m for a high success probability
in the last question.

Q.1 For the block cipher x 7→ Ck(x), describe the best possible known plaintext attack and
its complexity. Describe the attack with a pseudocode.

Note: in all questions of the exercise, the complexity is the average time complexity. It is
given in terms of number of C or C−1 evaluations to make, or equivalent computation.

For all a, we iteratively check for all (xi, yi) if Ca(xi) = yi. If any check fails, we
do not check other pairs and iterate. If all checks succeed, the algorithm stops and
yields a.

1: for all a do
2: set i = 0 and pass = true
3: while i < m and pass do
4: i← i+ 1
5: pass← Ca(xi) = yi
6: end while
7: if pass then
8: stop and yield a
9: end if

10: end for

For sure, if this algorithm tries the right a, it stops and yields it after m tests.
For nearly all wrong a, the first check Ca(xi) = yi fails, so the complexity is of
order 2ℓ +m.

Q.2 We define C ′
k1,k2

(x) = Ck2(Ck1(x)).

Find two functions f and g such that

∀k1, k2, x f(k1, x) = g(k2, C
′
k1,k2

(x))

Pra,b,k1,k2,x[f(a, x) = g(b, C ′
k1,k2

(x))] = 2−ℓ

prove these properties, and describe the best possible known plaintext attack and
its complexity. Describe the attack with a pseudocode.

We define f(a, x) = Ca(x) and g(b, y) = C−1
b (y). We have

g(k2, C
′
k1,k2(x)) = C−1

k2
(Ck2(Ck1(x))) = Ck1(x) = f(k1, x)

so the first property is satisfied. We also have

g(b, C ′
k1,k2(x)) = C−1

b (Ck2(Ck1(x)))

so, this is equal to f(a, x) = Ca(x) if and only if we have

Cb(Ca(x)) = Ck2(Ck1(x))

This happens with probability 2−ℓ. So, the second property is satisfied.
Hence, we can store in a hash table all values of a with key (f(a, x1), f(a, x2)). Then,
for all b, we look at key (g(b, y1), g(b, y2)). If there is any a, we check the pair (a, b)
on other (xi, yi) pairs as in the first question.

1: set all list H(·) to empty
2: for all a do
3: insert a in list H(f(a, x1), f(a, x2))
4: end for
5: for all b do
6: for all a in list H(g(b, y1), g(b, y2)) do
7: test the key (a, b) like in Q.1
8: end for
9: end for

Due to the first property, the iteration with b = k2 with yield a = k1. Due to the
second property, the probability of another (a, b) pair to pass before checking the other
(xi, yi) pairs is 2−2ℓ. So, we may have one wrong pair but it will be eliminated by
checking the other (xi, yi) pairs.
This algorithm has complexity O(2ℓ +m) times the cost of a C evaluation.

Q.3 We let ⋆ designate a group operation in {0, 1}ℓ. We define C ′′
k1,k2,k3

(x) = Ck3(k2 ⋆Ck1(x)).

Find two functions f and g such that

∀k1, k2, k3, x, x′ f(k1, x, x
′) = g(k3, C

′′
k1,k2,k3

(x), C ′′
k1,k2,k3

(x′))

Pra,b,k1,k2,k3,x,x′ [f(a, x, x′) = g(b, C ′′
k1,k2,k3

(x), C ′′
k1,k2,k3

(x′))] = 2−ℓ

and show the first property. Describe the best possible known plaintext attack and
its complexity. Describe the attack with a pseudocode.

We define f(a, x, x′) = Ca(x
′)inv ⋆Ca(x) and g(b, y, y′) = C−1

b (y′)inv ⋆C−1
b (y), where

zinv is the inverse of z in the sense of the ({0, 1}ℓ, ⋆) group. We have

g(k3, C
′′
k1,k2,k3(x), C

′′
k1,k2,k3(x

′)) = C−1
k3

(Ck3(k2 ⋆ Ck1(x
′)))inv ⋆ C−1

k3
(Ck3(k2 ⋆ Ck1(x)))

= (k2 ⋆ Ck1(x
′))inv ⋆ (k2 ⋆ Ck1(x))

= Ck1(x
′)inv ⋆ Ck1(x)

= f(k1, x, x
′)

Using the same algorithm as in the previous question, we obtain a candidate value
for (k1, k3) with complexity O(2ℓ). We expect to get 2ℓ such candidates. Once we get
it, we recover k2 by

k2 = C−1
k3

(y1) ⋆ Ck1(x1)
inv

Then, we can test (k1, k2, k3) with the other (xi, yi) pairs. So, the algorithm
is

1: set all list H(·) to empty
2: for all a do
3: insert a in list H(f(a, x1), f(a, x2))
4: end for
5: for all b do
6: for all a in list H(g(b, y1), g(b, y2)) do
7: set c = C−1

b (y1) ⋆ Ca(x1)
inv

8: test the key (a, c, b) like in Q.1
9: end for

10: end for

This gives an algorithm with complexity O(2ℓ +m).

Q.4 Assume a construction x 7→ Enck1,...,kn(x) like the ones in this exercise, i.e. based on the
block cipher x 7→ Ck(x) and using n keys k1, . . . , kn ∈ {0, 1}ℓ. Given m pairs (xi, yi),
estimate the probability that there exists no tuple (k′1, . . . , k

′
n) different from (k1, . . . , kn)

such that for all i, we have Enck′1,...,k′n(xi) = yi. Explain how to select a minimal m so
that this probability is high (i.e. very close to 1).
NOTE: We consider “reasonable” constructions Enck1,...,kn(x). I.e., there may be weird
counterexamples for which the results of this question are different.

Let k designate the right key tuple and k′ be a bad one (i.e., k′ ̸= k). The probability
that Enck′(xi) = yi for all i is 2−mℓ. The probability p that there is one such k′ is
bounded by the sum over all possible k′ that k′ is such, namely p ≤ 2nℓ × 2−mℓ. So,
the probability that there is no such k′ is at least 1 − 2−(m−n)ℓ. Hence, by taking
m = n+ 1, the probability is at least 1− 2−ℓ, which is very high.

3 A Variant of Diffie-Hellman in Z∗
n

In this exercise, we want to adapt the Diffie-Hellman protocol in the group Z∗
n for n = pq

where p and q are two different odd prime numbers which are not known by anyone.

We consider the following protocol:

Alice Bob

pick g ∈ Z∗
n at random

pick x ∈ {1, . . . , B} at random
X ← gx mod n

g,X−−−−−−−−−−→
Y←−−−−−−−−−− pick y ∈ {1, . . . , B} at random

Y ← gy mod n
K ← Y x mod n K ← Xy mod n

where B is an integer which is at least n2. We will see that using this protocol is not a good
idea.

Q.1 What is missing in the above variant of the Diffie-Hellman protocol? (Compare to what
was explained in class.)

– We did not check that X,Y ∈ ⟨g⟩.
– We did not use a KDF either to fix the bad distribution of gxy.
– We did not check low orders, e.g. X ̸= 1, X2 ̸= 1, etc.

Ideally, we should work in a group of prime order, but this is not the case in Z∗
n.

This would limit the last problem to checking X ̸= 1.

Q.2 Prove that Z∗
n is not cyclic. Then, explain why the protocol added g in the communica-

tion.

HINT: Show that Z∗
n is isomorphic to Zp−1 × Zq−1 and find elements of order two.

HINT2: It is not necessary to follow the previous hint.

We have a direct proof here: We use the Legendre symbols (x/p) and (x/q).
For any εp = ±1 and εq = ±1, there exist xp and xq such that (xp/p) = εp and
(xq/q) = εq. Using the Chinese Remainder Theorem, x = CRT(xp mod p, xq mod q)
is such that x mod p = xp and x mod q = xq, so (x/p) = (xp/p) = εp and (x/q) =
(xq/q) = εq. Hence, for any (εp, εq), there are values x ∈ Z∗

n such that (x/p) =
(xp/p) = εp and (x/q) = (xq/q) = εq. A generator g would have to generate elements
x for all these combinations.
Let g be in Z∗

n.
– If (g/p)(g/q) = +1, g only generates values x such that εp = εq, so not the entire

Z∗
n.

– If (g/p) = +1, g only generates values x such that εp = +1, so not the entire
Z∗
n.

– If (g/q) = +1, g only generates values x such that εq = +1, so not the entire
Z∗
n.

This covers all possible g.
We can also follow the hint to have an alternate proof. Due to the Chinese Remainder
Theorem, the Zn ring is isomorphic to the Zp × Zq ring. Their group of units are
isomorphic groups. So, Z∗

n is isomorphic to Z∗
p × Z∗

q, which is itself isomorphic to

Zp−1 × Zq−1. Then Zp−1 × Zq−1 has two elements (p−1
2 , 0) and (0, q−1

2) which have
order two. So, the group cannot be isomorphic to any Zm which has at most one
element of order two (namely, m/2 if integer). Hence, it cannot be cyclic.
Since Z∗

n is not cyclic, there is no generator. So, we have to specify which g generates
X and Y . This is why it was added in the protocol. Namely, it is easy to pick a
random element g in Z∗

n and work in the subgroup ⟨g⟩ generated by g.
Finally, we could also prove that Z∗

n is not cyclic be observing that λ(n) < φ(n).
Indeed, since both p and q are odd, we have λ(n) = lcm(pα−1(p − 1), qβ−1(q − 1))
and φ(n) = pα−1(p−1)× qβ−1(q−1). Since both p−1 and q−1 are even, the lcm is
lower than the product. So, we have no element of order φ(n) as orders are always
bounded by λ(n).

Q.3 Explain why can’t we pick x, y ∈ Zm where m is the order of g? Instead, we pick
x, y ∈ {1, . . . , B} uniformly, where B is an integer such that B ≥ n2. Let m be an integer
such that m < n. Prove that for any fixed value X,∣∣∣∣Pr[x = X]− Pr[y mod m = X] ≤ 1

B

∣∣∣∣
where x is uniformly distributed in Zm and y is uniformly distributed in {1, . . . , B}.

We cannot pick x, y ∈ Zm because we do not know m.
For x uniformly distributed in Zm, we have Pr[x = X] = 1

m . Let B = mt + r be
the Euclidean division of B by m, so with t = ⌊Bm⌋. For y uniformly distributed in
{1, . . . , B}, we have Pr[y = X] = t

B or Pr[y = X] = t+1
B , depending on the value of

X. We have t
B ≤

1
m ≤

t+1
B . So, |Pr[x = X]− Pr[y = X]| ≤ 1

B .

Q.4 Prove that there is a polynomial-time algorithm D such that

Pr[D(g, gx, gy, gxy) = 1]− Pr[D(g, gx, gy, gz) = 1] ≥ 1

4

where g ∈ Z∗
n is uniform and x, y, z ∈ Zm are uniform, with m equal to the order of g in

Z∗
n.

HINT: use the Jacobi symbol (·/n) and reconstruct a distinguisher like the one seen in
class. Consider the cases (g/n) = +1 and (g/n) = −1.

We define D(g,X, Y, Z). If (g/n) = +1, the algorithm answers 1. If (g/n) = −1,
the algorithm computes a = 1(Z/n)=−1 and b = 1(X/n)=(Y/n)=−1 and returns 1a=b.
We can easily see that for X = gx, Y = gy, and Z = gz, we have a = z mod 2 and
b = xy mod 2. So, we have

D(g, gx, gy, gz) = 1(g/n)=+1 or xy≡z (mod 2)

Clearly, Pr[D(g, gx, gy, gxy) = 1] = 1. Similarly, Pr[D(g, gx, gy, gz) = 1|(g/n) =
+1] = 1 and Pr[D(g, gx, gy, gz) = 1|(g/n) = −1] = 1

2 . So, Pr[D(g, g
x, gy, gz) = 1] =

3
4 . Hence

Pr[D(g, gx, gy, gxy) = 1]− Pr[D(g, gx, gy, gz) = 1] =
1

4

