Cryptography and Security — Midterm Exam

Serge Vaudenay

18.11.2021

– duration: 1h45
– no documents allowed, except one 2-sided sheet of handwritten notes
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade
– answers should not be written with a pencil

1 Diffie-Hellman in an RSA subgroup

The crypto apprentice wants to run the Diffie-Hellman protocol, but instead of running it in a subgroup of \(\mathbb{Z}_p^* \) with a prime \(p \), he decides to run it in a subgroup of \(\mathbb{Z}_n^* \) with an RSA modulus \(n \). He wants \(n \) to remain hard to factor, “for more security”. One goal of the exercise is to see if \(n \) indeed remains hard to factor.

We let \(n = pq \). We let \(g \in \mathbb{Z}_n^* \) and we denote by \(m \) its order in the group. We denote \(p' \) resp. \(q' \) the multiplicative order of \(g \) in \(\mathbb{Z}_p^* \) resp. \(\mathbb{Z}_q^* \). We assume that \(n \) and \(g \) are known by everyone.

Q.1 Prove that both \(p' \) and \(q' \) divide \(m \).
Q.2 In this question, we assume that \(q' = 1 \) and \(m > 1 \). Prove that anyone can factor \(n \) easily.
Q.3 We now assume that \(p' \) and \(q' \) are two different prime numbers. Prove that \(m = p'q' \).
Q.4 We still assume that \(p' \) and \(q' \) are different primes. We also assume that \(m \) is known and easy to factor. Fully specify a Diffie-Hellman protocol.
 Pay special attention to protection against subgroup issues.
Q.5 What is the problem if \(m \) is not known by Alice or Bob?
Q.6 If \(m \) is prime, prove that either \(p' = m \) and \(q' = 1 \), or \(p' = 1 \) and \(q' = m \), or \(p' = q' = m \).
Q.7 Is it a good idea to select \(m \) prime?

2 ElGamal over Exponentials

We consider the following public-key cryptosystem:

– Setup(1^λ): generate a prime \(q \) of size \(\lambda \) and parameters for a cyclic group of order \(q \). Select a generator \(g \) of this group. Set \(pp = (\text{parameters}, q, g) \). Given \(pp \), we assume that group operations are done in polynomial time complexity in \(\lambda \).
– Gen(pp): pick \(x \in \mathbb{Z}_q \) uniformly and \(y = g^x \) in the group. The secret key is \(x \) and the public key is \(y \).
– Enc(pp, y, pt): pick \(r \in \mathbb{Z}_q \) uniformly and output the ciphertext \((u, v) = (g^r, y^r) \).
– Dec(pp, x, u, v): solve \(y^r = u/v^x \) in \(pt \).

We assume that the encryption domain is the set of small integers: \(pt \in \{0, 1, \ldots, P(\lambda) - 1\} \), where \(P \) denotes a polynomial which will be discussed.
Q.1 Assuming that $2^{\lambda - 1} \geq P(\lambda)$, prove that the cryptosystem is correct.

Q.2 Propose a (non-polynomial) algorithm to do a key recovery attack and give its complexity.
 Note: correct answers with the lowest complexity will get more points.

Q.3 Propose a polynomial-time algorithm to implement Dec.

Q.4 Propose an appropriate way to select P and λ.

3 Generator of \mathbb{QR}_n

We take $n = pq$ with two different primes p and q which are such that $p' = \frac{p - 1}{2}$ and $q' = \frac{q - 1}{2}$ are two odd prime numbers. We let \mathbb{QR}_n be the group of quadratic residues modulo n, i.e. all elements which can be written $x^2 \mod n$ for $x \in \mathbb{Z}_n^*$.

Q.1 Prove that \mathbb{QR}_n has order $\varphi(n)/4$.

Q.2 Prove that \mathbb{QR}_n is cyclic. How many generators exist in \mathbb{QR}_n?

Q.3 Propose an efficient algorithm to find a generator of \mathbb{QR}_n which does not need the factor-ization of n but may fail with negligible probability (in terms of λ, the bitlength of p and q, i.e. $2^{\lambda - 1} < p < 2^\lambda$ and $2^{\lambda - 1} < q < 2^\lambda$).