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1 Symmetric-Key RSA

As people scare about quantum computers being able to factor RSA moduli, some people
proposed to continue to use RSA by keeping the public key secret and end up with an
encryption scheme with a symmetric key K = (N, e, d). For simplicity, we consider plain RSA
only. The purpose of the exercise is to make a quantum key recovery attack with chosen
plaintext.

Q.1 Fully describe the symmetric-key RSA scheme between a sender Alice and a receiver Bob
(key structure, message domains, key generation, encryption, decryption).

Key generation: Bob generates two different large prime numbers p and q and select
an integer e which is coprime with (p − 1)(q − 1). Compute N = pq and d the
multiplicative inverse of e modulo (p− 1)(q − 1). Set the key to K = (N, e, d). The
key must be securely transmitted from Bob to Alice. We assume that N has ℓ bits,
i.e. 2ℓ−1 ≤ N < 2ℓ.
The message space is the set of bit strings. Each bitstring is encoded as an integer
using the binary representation. Zero leading bits are ignored. A plaintext is limited
to ℓ− 1 bits. Ciphertext can have ℓ bits.
Encryption: the encryption of x with key K = (N, e, d) is y = xe mod N . Alice
encrypts x this way then sends y to Bob.
Decryption: the decrption of y with key K = (N, e, d) is x = yd mod N . Bob decrypts
y this way and retreives the plaintext x.

Q.2 Describe the game for key recovery with chosen plaintext with the symmetric scheme of
the previous question.



1: run the key generation to select K = (N, e, d)
2: run AOEnc → K ′

3: return 1K=K′

Oracle OEnc(x):
4: return xe mod N

Q.3 In the case where e is small (e.g. e = 65 535) and known by the adversary, propose an
efficient (quantum) key-recovery attack with one known plaintext.

If the adversary gets an (x, y) pair, the adversary can compute N ′ = xe − y because
e is small. This is a multiple of N . Then, the adversary can factor N ′ and isolate
the two prime factors p and q of right length. Then, N and d can be derived.

Q.4 Propose an efficient (quantum) key-recovery attack with two chosen plaintexts, (e is not
known any more and can be large as well).

The adversary can select a small x and get the encryption of x and x2 which we
denote by y and y′ respectively. Then, the adversary computes N ′ = y2 − y′ which
is a multiplie of N . Then, the adversary can factor N ′ and isolate the two prime
factors p and q of right length and deduce N = pq.
The adversary can then compute x̄ = x mod p and ȳ = y mod p, then the discrete
logarithm of ȳ in basis x̄ to deduce e. After getting e, the adversary can compute its
inverse d modulo (p− 1)(q − 1).



2 Hash-Based Signature

We consider a one-way hash function F from a set E to itself. We further consider a collision-
resistant hash function H mapping an arbitrary message m to a digest H(m) belonging to a
given hash space. We analyze some digital signature schemes based on F and H.

Q.1 We recall the Lamport scheme with parameter n.

– Key generation: pick 2n random ski,b ∈ E for i = 1, . . . , n and b ∈ {0, 1}, compute
pki,b = F (ski,b). We set sk = (ski,b)i=1,...,n;b=0,1 and pk = (pki,b)i=1,...,n;b=0,1.

– Hash space: H(m) ∈ {0, 1}n.
– Signature: σ = (ski,H(m)i)i=1,...,n.

– Verification: check F (σi) = pki,H(m)i for i = 1, . . . , n.

The scheme should be used to sign a single message but we investigate what happens if
we sign several.

Q.1a Assume the adversary knows two signed messages (m1, σ1) and (m2, σ2) such that
H(m1) and H(m2) differ on exactly d bit positions. Given a random m, what is the
probability that the adversary can forge a signature for m?

The probability corresponds to H(m)i ∈ {H(m1)i,H(m2)i} for every i. For each i
in which H(m1) and H(m2) differ, this always happens. For other i (there are n−d
of them), this happens with probability 1

2 . Hence, the probability to be able to forge
is 1

2n−d .

Q.1b If m,m1,m2 are random, what are the expected value of d and the probability to
forge?

The expected distance between H(m1) and H(m2) is n
2 . The probability is roughly

2−
n
2 if we directly plug the expected value of d in the formula. More precisely, the

expected probability is
n∑

d=0

1

2n−d

(
n

d

)
2−n =

(
3

4

)n

Q.1c Propose a key-recovery chosen message attack using O(log n) chosen messages, similar
complexity, and success probability 1.



The idea is that we repeatedly pick random messages so that their signature would
reveal half of the unknown secrets.

1: pick m1 at random
2: set I = {1, . . . , n}
3: for j = 2 to log2 n do
4: repeat
5: pick mj at random
6: set d =

∑
i∈I 1H(mj)i ̸=H(m1)i

7: until d ≥ 1
2#I

8: set I ← {i ∈ I;H(mj)i = H(m1)i}
9: end for

10: return m1,m2, . . .

We keep in I the indices i for which we are missing one ski,b value. At each iteration,
we make sure that the selection of a new message reduces the size of I by at least
half. Hence, the signature of all mj reveals all secrets.
The repeat loop clearly repeats a constant number of times. Therefore, the complexity
is O(log n) and the success probability is 1.

Q.2 We recall the FORS scheme with parameters k and t.
– Key generation: pick kt random ski,j ∈ E for i = 1, . . . , k and j = 1, . . . , t, compute

pki,j = F (ski,j). We set sk = (ski,j)i=1,...,k;j=1,...,t and pk = (pki,j)i=1,...,k;j=1,...,t.

– Hash space: H(m) ∈ {1, . . . , t}k.
– Signature: set σ = (ski,H(m)i)i=1,...,k.
– Verification: check F (σi) = pki,H(m)i for i = 1, . . . , k.
This scheme is meant to be used to sign a few messages.

Q.2a After the signature of n random messages, what is, for each i, the expected number of
indices j for which ski,j is revealed?

An ski,j remains secret after n signatures with probability
(
1− 1

t

)n
≈ e−

n
t . So, the

average number of revealed ones is t(1− e−
n
t ) for each i.

Q.2b Compute roughly the probability to be able to forge the signature of a random message
after n random messages have been signed.

The probability that a required ski,j is known is 1− e−
n
t . Hence, the probability to be

able to forge the signature is (1− e−
n
t )k.

Q.2c Application: k = 33, t = 26. How many random messages can we sign without this
probability becoming larger than 1

2?

For n = 247, we have (1 − e−
n
t )k < 1

2 . For n = 248, we have (1 − e−
n
t )k > 1

2 . So,
we can now sign 247 random messages. This is better than the log2 n of the Lamport
scheme.



3 DLP in GGM

We define the Discrete Logarithm Problem (DLP) in the Generic Group Model (GGM) as
follows. Given a prime number q, we define the following game Γ :

ΓA

1: pick x ∈ Zq uniformly at random
2: set Mem← (1, x)
3: run AOAdd,OCmp(q)→ y
4: return 1x=y

Oracle OAdd(i, j):
5: S ← Mem[i] +Mem[j] mod q
6: append S to the list Mem
7: return

Oracle OCmp(i):
8: return 1Mem[i]=0

We use a memory Mem which is defined as a list of write-only registers. If Mem is of length
n, the registers are Mem[1], . . . ,Mem[n]. In Step 2, Mem is initialized with length n = 2 so
that Mem[1] = 1 and Mem[2] = x. In Step 6, the length of Mem is incremented: Appending a
value S to Mem means defining a new register Mem[n + 1] set to S. Essentially, this model
allows the adversary A to do group operations over Zq in a blind manner through the OAdd
oracle. The adversary does not see the content of the memory Mem but knows the group order
q. Additionally, the adversary can test is a register contains 0 through the OCmp oracle. The
DLP is then defined in the usual manner. The advantage of A is

AdvA = Pr[ΓA → 1]

The goal of the exercise is to show that DDH is hard in GGM.

Q.1 Let a, b ∈ Zq be fixed. Construct an (as efficient as possible) adversary A so that at the
end of the game, the last memory register contains a+ bx mod q. Analyze its complexity.

We use the double-and-add algorithm to have a = a.Mem[1] in a register, then
bx ≡ b.Mem[2], then we finally add both results.
For instance, a.Mem[1] would first require to compute 2i.Mem[1] for i =
1, 2, . . . , ⌊log2(a)⌋. This is done by the sequence OAdd(1, 1), OAdd(2, 2),i OAdd(3, 3),
... Then, we add together the results corresponding to a bit of a equal to 1. In the
worst case, we have 2⌊log2(a)⌋ oracle calls to OAdd.
The complexity, measures in the number of oracle calls to OAdd is bounded by
4⌊log2(q)⌋+ 1.

Q.2 By using only OAdd and OCmp and given two integers i and j, show how A can efficiently
determine whether Mem[i] = Mem[j] or not. Analyze its complexity.

One idea is first to compute Mem[i] + (q − 1)Mem[j], which would be the difference,
then making a OCmp call to the result. Applying the previous question, the number
of OAdd is bounded by 2⌊log2(q)⌋+ 1 and we need an extra OCmp.

Q.3 Propose an adversary A of advantage 1 of minimal complexity to solve DLP. Carefully
discuss if it fits the GGM model.



We can use the baby-step giant-step algorithm which works in complexity O(√q).
One problem is that we use a hash table with group elements as a key, which is not
offered in GGM. To emulate this data structure, we would need to make specific
OCmp comparisons which would increase the complexity to O(q).
The Polard-Rho algorithm cannot be used as is because it uses the value of group
elements which is not available here.

Q.4 If A never queries OCmp, prove that AdvA(λ) =
1
q .

If no OCmp is used, the adversary never gets any information about the content of
the registers. Hence, what the adversary sees is independent from x. So, the output
y is also independent from x. Since x is uniformly distributed, we have x = y with
probability 1

q .

Q.5 Prove by induction that a process which observes the queries made by A to the oracle can
define 2-dimensional vectors v1, . . . , vn such that for every i, we have Mem[i] = vi[1] +
vi[2]× x mod q.

We can already see that it is true for n = 1 and n = 2 with v1 = (1, 0) and
v2 = (0, 1). If this is true for the first n− 1 register values, the n-th one is the result
of an addition between two previous register values of some index i and j. Hence,
we can set vn = vi + vj mod q to obtain the result.

Q.6 Given (a, b) ∈ Z2
q such that (a, b) ̸= (0, 0), prove that Pr[a + bx mod q = 0] ≤ 1

q over the
random selection of x ∈ Zq.

If b = 0, we get that a ̸= 0 so the probability is 0. If b ̸= 0, we have a + bx = 0
equivalent to x = −a

b which occurs with probability 1
q . In all cases, Pr[a+bx mod q =

0] ≤ 1
q .

Q.7 We define the alternate comparison procedure which is formalized as a subroutine of the
adversary:

Subroutine AltCmp(i):
1: return 1vi=(0,0)

where vi is obtained from Q.5. We define At, the adversary running exactly as A except
that the t first queries to OCmp are made to AltCmp instead of Ocmp.
Prove that AdvAt ≤ AdvAt−1 +

1
q .

HINT: define the event E that vi ̸= 0 and Mem[i] = 0, where i is the index which is
queried to the t-th comparison oracle call.

We compare the executions of At−1 and At step by step. They only differ when the
t-th comparison is queried with some given input i. We let E be the event that vi ̸= 0
and Mem[i] = 0. If E does not occur, the two executions continue the same way.
Hence, the advantage difference is bounded by Pr[E]. Clearly, whatever A does before
this time is independent from x, as no OCmp call is made. Hence, vi is independent
from x. Using the previous questions, we have Pr[E] ≤ 1

q .



Q.8 Deduce AdvA(λ) ≤ n+1
q when A is limited to n oracle calls to OCmp.

We apply AdvAt ≤ AdvAt−1+
1
q n times to obtain AdvA ≤ AdvAn+

n
q . Then, we apply

AdvAn = 1
q as it uses no OCmp comparison. It uses AltCmp comparisons which are

done by the adversary without any oracle call.


