
Cryptography and Security — Final Exam

Serge Vaudenay

19.1.2024

– duration: 3h
– no documents allowed, except one 2-sided sheet of handwritten notes
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade
– answers should not be written with a pencil



1 The Security of Nonce-Based Symmetric Encryption

We recall the CPCA decryption game against non-based symmetric encryption on message
space D, nonce space N , and key space {0, 1}k.

Game
1: K

$←− {0, 1}k

2: X0
$←− D, N0

$←− N
3: Used← {N0}
4: Y0 ← Enc(K,N0, X0)
5: AOEnc,ODec(N0, Y0)→ X
6: return 1X=X0

Oracle OEnc(N,X):
7: if N ∈ Used then return ⊥
8: Used← Used ∪ {N}
9: return Enc(K,N,X)

Oracle ODec(N,Y ):
10: if (N,Y ) = (N0, Y0) then return ⊥
11: return Dec(K,N, Y )

Q.1 List the differences with the CPA decryption game. Do the same for the CPCA key
recovery game and the CPA key recovery game.



Q.2 Recall how to adapt the Vernam cipher to make a nonce-based symmetric encryption
scheme with a PRNG, and show that it is insecure against CPCA decryption attacks.



Q.3 We change the CPA decryption attack game by allowing nonce reuse in the encryption
oracle. Show that a nonce-based symmetric encryption scheme based on the Vernam cipher
is insecure in this game.



Q.4 We use a block cipher CK and assume that the block space is given a finite field structure
F = D. We define Enc(K,N, pt) = pt ×K + CK(N), for K ∈ F∗ and pt ∈ F. Show that
this nonce-based symmetric encryption system is insecure against CPCA key recovery
attacks.



Q.5 For a stateless implementation of the message sender, what would you recommend for a
nonce length in practice and why? (Here, stateless means that the sender does not keep
more than the secret key in memory in between two messages to send.)



2 Privacy Pass

We consider a group G of prime order q. We use additive notations for this group. Let H
be a random function from the set of bistrings to G − {0}. We assume that H is publicly
known. We consider a function family (fK)K∈Z∗

q
from the set of bitstrings to G defined by

fK(x) = K · H(x). We call K a secret key. We design a token-issuance protocol between a
client and a server as follows:

– The client has a bitstring x as input. The server has a key K as input.
– The client picks λ ∈ Z∗

q , sets X = λ ·H(x), and sends X to the server.
– The server computes Y = K ·X and returns it to the client.
– The client computes Z = 1

λ · Y and takes it as an output.

A token is a (x, Z) pair. After the token is issued by the above protocol, the client can redeem
the token to the server. The server accepts the token as valid if it satisfies Z = fK(x). We
consider the following security game:

Game Γb

1: pick H : {0, 1}∗ → G− {0}
2: K

$←− Z∗
q

3: pick F : {0, 1}∗ → G− {0}
4: AOH,OF → z
5: return z

Oracle OH(x):
6: return H(x)

Oracle OF(x):
7: if b = 0 then return F (x)
8: return fK(x)

The advantage of adversary A is Adv = Pr[Γ1 → 1] − Pr[Γ0 → 1]. We assume that this
construction is secure in the sense that for any adversary A limited to a feasible complexity
and number of oracle queries, the advantage is negligible.

Q.1 If we remove the first line of the game and the oracle OH, what is this security notion?
Why did we add the oracle OH?



Q.2 Let x be a random bitstring following an arbitrary distribution, H be an arbitrary function
(fixed), K be the random key, and λ be the random mask. In the issuance protocol, prove
that X is independent from x.



Q.3 The token-issuance protocol is sometimes called an oblivious evaluation protocol for fK(x).
Explain (guess) why?



Q.4 Assume that a malicious client can interract with a token-issuance-server oracle and with
a token-redeem-server oracle. We want to formalize the security notion saying that if the
adversary interacts n times with the issuance server oracle, then it cannot produce n+ 1
pairwise different valid tokens. This is called one-more unforgeability (OMUF). Propose
a game to define OMUF security.



3 Discrete Log in a Small Set

We consider a group G of large prime order q with a generator g. Given y ∈ G, the discrete
logarithm problem is the problem of finding x ∈ Zq such that y = x ·g. One generic algorithm
to solve that is the Baby-Step Giant-Step algorithm which is recalled below.

Input: g and y in a group G, B an upper bound for #G
Precomputation (y not provided)
1: set ℓ = ⌈

√
B⌉

2: for i = 0, . . . , ℓ− 1 do
3: define T{(iℓ) · g} = i
4: end for

Algorithm (y provided)
5: for j = 0, . . . , ℓ− 1 do
6: compute z = y − j
7: if T{z} is defined then
8: yield x = ℓT{z}+ j and stop
9: end if

10: end for

We let S be a small subset of Zq consisting of all integers between a and b, with b− a small.
That is, S = {a, a+ 1, . . . , b}. We call S a small interval of Zq. Given y ∈ G, we consider the
problem of finding x ∈ Zq such that y = x · g, when we know that there exists one such x in
S.

Q.1 Optimize the implementation of the Baby-Step Giant-Step in order to minimize the total
number of group additions. Analyze the precomputation complexity (total number of
group additions in precomputation), time complexity (total number of group additions in
the algorithm using y), and memory complexity (total number of entries defined in T ).
(Give the worst case and the average case.)





Q.2 Propose a variant of this algorithm for the problem in this exercise (with solutions in S)
and analyze its precomputation complexity, time complexity, and memory complexity.



Q.3 What time-memory tradeoffs are possible in the algorithm?



Q.4 Propose a way to adapt the ElGamal encryption to encrypt a small bitstring instead of a
group element. Specify the size of this plaintext.




