
Cryptography and Security — Final Exam

Solution

Serge Vaudenay

19.1.2024

– duration: 3h

– no documents allowed, except one 2-sided sheet of handwritten notes

– a pocket calculator is allowed

– communication devices are not allowed

– the exam invigilators will not answer any technical question during the exam

– readability and style of writing will be part of the grade

– answers should not be written with a pencil

The exam grade follows a linear scale in which each question has the same weight.

1 The Security of Nonce-Based Symmetric Encryption

We recall the CPCA decryption game against non-based symmetric encryption on message
space D, nonce space N , and key space {0, 1}k.

Game
1: K

$←− {0, 1}k

2: X0
$←− D, N0

$←− N
3: Used← {N0}
4: Y0 ← Enc(K,N0, X0)
5: AOEnc,ODec(N0, Y0)→ X
6: return 1X=X0

Oracle OEnc(N,X):
7: if N ∈ Used then return ⊥
8: Used← Used ∪ {N}
9: return Enc(K,N,X)

Oracle ODec(N,Y ):
10: if (N,Y ) = (N0, Y0) then return ⊥
11: return Dec(K,N, Y )

Q.1 List the differences with the CPA decryption game. Do the same for the CPCA key
recovery game and the CPA key recovery game.

For CPA games, we should remove the ODec oracle.
For key recovery, lines 2, 4, and 10 are removed and there is no N0 or X0 to add
in Used nor to give to A. The winning condition is that the output of A on line 5 is
equal to K instead of X0.

Q.2 Recall how to adapt the Vernam cipher to make a nonce-based symmetric encryption
scheme with a PRNG, and show that it is insecure against CPCA decryption attacks.



A Vernam-based cipher works as Enc(K,N,X) = X ⊕ PRNG(K,N). We can define
the following adversary:

1: pick Y as long as Y0 but different
2: call ODec(N0, Y )→ Z
3: set X = Z ⊕ Y ⊕ Y0
4: return X

Clearly, we have

X = Z ⊕ Y ⊕ Y0 = PRNG(K,N0)⊕ Y0 = X0

so the adversary has advantage 1 with a single ODec query.

Q.3 We change the CPA decryption attack game by allowing nonce reuse in the encryption
oracle. Show that a nonce-based symmetric encryption scheme based on the Vernam cipher
is insecure in this game.

We only use one OEnc oracle call with nonce N0. This is normally illegal but this
question of the exercise allowed it.

1: pick X ′ as long as Y0
2: call OEnc(N0, X

′)→ Y ′

3: set X = Y ′ ⊕X ′ ⊕ Y0
4: return X

We now have
X = Y ′ ⊕X ′ ⊕ Y0 = PRNG(K,N0)⊕ Y0 = X0

so the adversary has advantage 1 with a single OEnc query with nonce misuse.

Q.4 We use a block cipher CK and assume that the block space is given a finite field structure
F = D. We define Enc(K,N, pt) = pt×K+CK(N), for K ∈ F∗ and pt ∈ F. Show that this
nonce-based symmetric encryption system is insecure against CPCA key recovery attacks.

1: pick Y1, Y2 ∈ F different
2: pick N ∈ F∗

3: call ODec(N,Y1)→ X1

4: call ODec(N,Y2)→ X2

5: set K ′ = (Y2 − Y1)/(X2 −X1)
6: return K ′

Clearly, two plaintext/ciphertext pairs (X1, Y1) and X1, Y2) with same nonce N give
two linear equations with unlnowns K and CK(N). It solves by K ′ = K.

Q.5 For a stateless implementation of the message sender, what would you recommend for a
nonce length in practice and why? (Here, stateless means that the sender does not keep
more than the secret key in memory in between two messages to send.)



If the sender is stateless, it cannot keep a counter or any track of the used nonces.
However, the nonce must not be reused. Hence, the only way is to use a random
nonce which is long enough to avoid repetitions in practice. Due to the birthday
paradox, B2 must be negligible compared to the nonce space size, where B is an
upper bound on the number of messages the sender will ever send with the same key.
By assuming B = 240, having a nonce of 128 bits should be safe. The probability of
a collision after B samples is about 1− eB

22−128/2 ≈ 2−49.



2 Privacy Pass

We consider a group G of prime order q. We use additive notations for this group. Let H
be a random function from the set of bistrings to G − {0}. We assume that H is publicly
known. We consider a function family (fK)K∈Z∗

q
from the set of bitstrings to G defined by

fK(x) = K · H(x). We call K a secret key. We design a token-issuance protocol between a
client and a server as follows:

– The client has a bitstring x as input. The server has a key K as input.
– The client picks λ ∈ Z∗

q , sets X = λ ·H(x), and sends X to the server.
– The server computes Y = K ·X and returns it to the client.
– The client computes Z = 1

λ · Y and takes it as an output.

A token is a (x, Z) pair. After the token is issued by the above protocol, the client can redeem
the token to the server. The server accepts the token as valid if it satisfies Z = fK(x). We
consider the following security game:

Game Γb

1: pick H : {0, 1}∗ → G− {0}
2: K

$←− Z∗
q

3: pick F : {0, 1}∗ → G− {0}
4: AOH,OF → z
5: return z

Oracle OH(x):
6: return H(x)

Oracle OF(x):
7: if b = 0 then return F (x)
8: return fK(x)

The advantage of adversary A is Adv = Pr[Γ1 → 1] − Pr[Γ0 → 1]. We assume that this
construction is secure in the sense that for any adversary A limited to a feasible complexity
and number of oracle queries, the advantage is negligible.

Q.1 If we remove the first line of the game and the oracle OH, what is this security notion?
Why did we add the oracle OH?

This is the pseudorandom function (PRF) security notion where we added access
to the random function H through oracle OH. (This is called PRF in the random
oracle model.) We added access to H because this function is supposed to be publicly
known, so accessible by the adversary. We cannot provide the table of H which is
too large (actually, it has infinite size) so we rather give access to an oracle which
evaluate H.

Q.2 Let x be a random bitstring following an arbitrary distribution,H be an arbitrary function
(fixed), K be the random key, and λ be the random mask. In the issuance protocol, prove
that X is independent from x.

Let g be a generator of G and L = logg H(x). Clearly, λ and L are independent,
and in Z∗

q. We have logg X = λL. Since λ is uniform in Z∗
q and independent from

L, then logg X is independent from x. (This is a result from Chapter 1 as the group
operation of two independent random variables, one being uniform in the group.)
Thus, X is independent from x. It reveals no information about x.



Q.3 The token-issuance protocol is sometimes called an oblivious evaluation protocol for fK(x).
Explain (guess) why?

This is because nothing about x leaks to the server during issuance. If the server
engages with several issuance sessions with several clients and is later on given one
token for redeem, the server cannot figure out to which issuance session is corre-
sponds.

Q.4 Assume that a malicious client can interract with a token-issuance-server oracle and with
a token-redeem-server oracle. We want to formalize the security notion saying that if the
adversary interacts n times with the issuance server oracle, then it cannot produce n+ 1
pairwise different valid tokens. This is called one-more unforgeability (OMUF). Propose
a game to define OMUF security.

Here is the OMUF game:

Game
1: K

$←− Z∗
q

2: n← 0
3: AOIss,ORed → (x1, Z1), . . . , (xm, Zm)
4: if m ̸= n+ 1 then return 0
5: for i = 1 to m do
6: for j = i+ 1 to m do
7: if xi = xj then return 0
8: end for
9: ORedeem(xi, Zi)→ bi

10: if b1 = 0 then return 0
11: end for
12: return 1

Oracle OIss(X):
13: n← n+ 1
14: return K ·X

Oracle ORed(x, Z):
15: return 1Z=K·H(x)

The two oracles are OIss and ORed which model the interactions with the server in
issuance or redeem. We added a counter n to count the number of calls to the is-
suance server oracle OIss. Eventually, the adversary produces m tokens. The winning
condition is that m = n + 1, that all xi are pairwise different, and that all tokens
are valid.



3 Discrete Log in a Small Set

We consider a group G of large prime order q with a generator g. Given y ∈ G, the discrete
logarithm problem is the problem of finding x ∈ Zq such that y = x ·g. One generic algorithm
to solve that is the Baby-Step Giant-Step algorithm which is recalled below.

Input: g and y in a group G, B an upper bound for #G
Precomputation (y not provided)
1: set ℓ = ⌈

√
B⌉

2: for i = 0, . . . , ℓ− 1 do
3: define T{(iℓ) · g} = i
4: end for

Algorithm (y provided)
5: for j = 0, . . . , ℓ− 1 do
6: compute z = y − j · g
7: if T{z} is defined then
8: yield x = ℓT{z}+ j and stop
9: end if

10: end for

We let S be a small subset of Zq consisting of all integers between a and b, with b− a small.
That is, S = {a, a+ 1, . . . , b}. We call S a small interval of Zq. Given y ∈ G, we consider the
problem of finding x ∈ Zq such that y = x · g, when we know that there exists one such x in
S.

Q.1 Optimize the implementation of the Baby-Step Giant-Step in order to minimize the total
number of group additions. Analyze the precomputation complexity (total number of
group additions in precomputation), time complexity (total number of group additions in
the algorithm using y), and memory complexity (total number of entries defined in T ).
(Give the worst case and the average case.)



To optimize, we have to clarify what is the notion of step. In the precomputation,
we can compute (iℓ) · g after we computed ((i− 1)ℓ) · g by just adding ℓ · g. Adding
this is the notion of making a giant step and it costs one addition, assuming that
ℓ · g was computed before the loop. After the precomputation phase, we can compute
−j ·g after we computed −(j−1) ·g by adding −g. This is a small step and it requires
to precompute −g. We obtain

Input: g, y, G, B
Precomputation (y not provided)
1: set ℓ = ⌈

√
B⌉

2: compute S = ℓ · g
3: set z = 0
4: for i = 0, . . . , ℓ− 1 do
5: define T{z} = i
6: set z ← z + S
7: end for

Algorithm (y provided)
8: compute s = −g
9: set z = y

10: for j = 0, . . . , ℓ− 1 do
11: if T{z} is defined then
12: yield x = ℓT{z}+ j and stop
13: end if
14: set z ← z + s
15: end for

Assuming that ℓ · g up to 2 log2
√
B additions using the double-and-square algorithm

and that −g has the same cost as one addition, the precomputation needs at most√
B + log2B additions (worst case and average case are the same), the discrete log

phase takes at most
√
B additions (half of it on average), and the T contains

√
B

entries.

Q.2 Propose a variant of this algorithm for the problem in this exercise (with solutions in S)
and analyze its precomputation complexity, time complexity, and memory complexity.



We cut the S interval to make baby steps and giant steps.

Input: g, y, G, a, b
Precomputation (y not provided)
1: set ℓ = ⌈

√
b− a⌉

2: compute S = ℓ · g
3: compute z = a · g
4: for i = 0, . . . , ℓ− 1 do
5: define T{z} = i
6: set z ← z + S
7: end for

Algorithm (y provided)
8: compute s = −g
9: set z = y

10: for j = 0, . . . , ℓ− 1 do
11: if T{z} is defined then
12: yield x = ℓT{z}+ j and stop
13: end if
14: set z ← z + s
15: end for

The complexity analysis is obtained by replacing B by b− a. We shall as the cost of
computing the starting point a · g of the precomputation. The precomputation needs
at most

√
b− a+2 log2(b−a) additions (worst case and average case are the same),

the discrete log phase takes at most
√
b− a additions (half of it on average), and the

T contains
√
b− a entries.

Q.3 What time-memory tradeoffs are possible in the algorithm?

We do not have to cut the interval in
√
b− a giant steps and the same number of baby

steps in between. If we cut it in M giant steps, with ℓ = ⌈ b−a
M ⌉, we obtain M entries in

T , same precomputation complexity (by neglecting the S and z precomputations), and
b−a
M baby steps in the discrete log phase. The tradeoff is thus M for precomputation

and memory complexity versus b−a
M time complexity in the discrete log phase.

Q.4 Propose a way to adapt the ElGamal encryption to encrypt a small bitstring instead of a
group element. Specify the size of this plaintext.

Recall that the ElGamal cryptosystem can only encrypt group elements. Taking the
bistring pt as an integer written in binary, we can use ElGamal to encrypt pt · g,
which is a group element. After ElGamal decryption, we can compute the discrete
logarithm to recover pt. For plaintexts of 64 bits, the above algorithms work with
complexity 232 and a precomputed table of 232 entries, which is doable. It is already
expensive, compared to alternate cryptosystems.


