
Cryptography and Security — Midterm Exam

Solution

Serge Vaudenay

1.11.2023

– duration: 1h45
– no documents allowed, except one 2-sided sheet of handwritten notes
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade
– answers should not be written with a pencil

The exam grade follows a linear scale in which each question has the same weight.

1 Perfect Secrecy with Enigma

This exercise is about Enigma, and the possibility to obtain perfect secrecy when we limit the
length of the plaintext. We assume that the Enigma key is uniformly distributed among the
Enigma keyspace. We recall that a key is defined by four alphabet permutations α0, β0, γ0, σ
and an offset a. The permutations α0, β0, γ0 are elements of a choice of 5 permutations and
must be different (they are the rotors). The permutation σ is an involution with 14 fixed
points (this is the plugboard). The offset a is an integer such that 0 ≤ a < 263. To encrypt a
bitstring x = x1 · · ·xm, we obtain y = y1 · · · ym with

yi = σ−1 ◦ α−1
i1
◦ β−1

i2
◦ γ−1

i3
◦ π ◦ γi3 ◦ βi2 ◦ αi1 ◦ σ(xi)

where π is a fixed involution with no fixed point (this is the reflector), i+a = 262i3+26i2+i1,
with 0 ≤ ij < 26, and αi = ρi ◦ α0 ◦ ρ−i (the first rotor in position i), the same for βi and γi,
and ρ is the circular rotation of the alphabet (of 26 letters).

Q.1 Recall what is the necessary constraint regarding the message space and the key space to
obtain perfect secrecy.

Due to the Shannon theorem, the keypace must have at least as many elements as
the support of the message space, i.e. the number of messages which can occur with
nonzero probability.

Q.2 What is the minimal message length beyond which this constraint is not respected?
HINT: we have seen in class that the Enigma keyspace has cardinality 2k with k ≈ 57.

The message space is based on an alphabet of 26 letters. If 26ℓ > 2k, there is no way
to obtain perfect secrecy with arbitrary plaintext distributions. This gives as a limit

ℓ = k
log 2

log 26
= k × 0.213

For k = 57, this is ℓ = 12.1. Beyond 12 characters, there is no perfect secrecy.



Q.3 Prove that when we press a key c, the lamp which shows on is never equal to c.

Given the formula to compute yi in terms of xi, there exists a permutation φi which
depends on i such that

yi = φ−1
i ◦ π ◦ φi(xi)

Actually, φi = γi3 ◦βi2 ◦αi1 ◦σ. We know that π is an involution with no fixed point
by design. If we had yi = xi, we would have π(φi(xi)) = φi(xi) and φi(xi) would be
a fixed point of π, which is not possible. Hence, we have yi ̸= xi for every i and x:
whenever we press xi, the lamp yi is different from xi.

Q.4 Prove that Enigma offers no perfect secrecy even when we limit the message space to one
character and the plaintext can be any element of that space with a nonzero probability.

Let X and Y denote the plaintext and the ciphertext, respectively. We note that X
and Y are in the same message space, due to the Enigma structure. Let c be such
that Pr[Y = c] ̸= 0. We have Pr[X = c] ̸= 0 due to the assumption. However, we
have Pr[X = Y = c] = 0 due to the previous question. Hence, Pr[X = Y = c] ̸=
Pr[X = c] Pr[Y = c]. Therefore, X and Y are not independent and we do not have
perfect secrecy.



2 Diffie-Hellman Forever

We consider a group G (with multiplicative notations) generated by some g. The textbook
Diffie-Hellman protocol is as follows:

– Alice picks a random x, computes X = gx, and sends X to Bob.

– Bob picks a random y, computes Y = gy, and sends Y to Alice.

– Alice computes K = Y x, Bob computes K = Xy, and they both use it as a secret key.

Q.1 There are 4 important details missing in the textbook Diffie-Hellman protocol (4 for Alice
and 4 for Bob). Spot at least 3.

First of all, the distribution to sample x or y is missing. It is uniform, in a set Z∗
q,

where q is the order of the group.
Second, they must verify that what they receive is not the neutral element to avoid
the trivial man-in-the.middle attack making K = 1.
Third, they must verify that what they receive is a group element. This avoids attacks
seen in class and other problems.
Finally, they must transform K using a KDF function before using it, because the
distribution of a bitstring representing a group element may be weird.

Q.2 Let p and q be large prime numbers and g be an element of Z∗
p of order q. Hence, we have

G = ⟨g⟩. Given a random element z ∈ Z∗
p, how do we check efficiently if z ∈ G? Analyze

the time complexity.

Since g has order q in Z∗
p of order p − 1, we know that q divides p − 1, due to

the Lagrange theorem. We have seen in class that for any prime number q dividing
p− 1 there is a unique subgroup of Z∗

p of order q, and it is the group of the roots of
the equation zq − 1 = 0 in the Zp field. So, we can check membership by computing
zq mod p using the square-and-multiply algorithm and comparing the result to 1. The
complexity is O(ℓ3) where ℓ is the bitlength of p.

Q.3 Let p, q, r be pairwise different large prime numbers and g be an element of Z∗
p of order

n = qr. Hence, we have G = ⟨g⟩. Given a random element z ∈ Z∗
p, how do we check

efficiently if z ∈ G? Analyze the time complexity.

HINT: thanks to Bezout, we can write z = (zq)u(zr)v and use the previous result.

It works like in the previous question: for any z ∈ Z∗
p, we have z ∈ G if and only if

zn mod p = 1. The ⇒ sense is due to the Lagrange theorem. To prove the ⇐ sense,
we can proceed like in the proof from the course or use the following trick.
We assume that zn mod p = 1. zr satisfies (zr)q = 1 so is the unique subgroup
of order q, which is generated by gr. Hence, zr = gar. Similarly, zq = gbq. We
can use a Bezout relation uq + vr = 1 (due to q and r being coprime) and get
z = (zq)u(zr)v = gubq+var to show that z is generated by g.
The complexity is O(ℓ3) where ℓ is the bitlength of p.



Q.4 Is there any advantage of using a subgroup of Z∗
p of order qr? Discuss when q and r are

known. Discuss when n is known but neither q nor r. Discuss when n is unknown.
[This is an open question. Any answer with a detailed analysis is welcome.]

First of all, we have seen in the class that it is not recommended to use a group G of
composite order. If we are open-minded, we can try to see the consequences of that.
Normally, in a group of order q, we use a q of 256 bits and have exponentials with
256-bit exponents. We could wonder if there is an advantage.
If the discrete logarithm is easy in either ⟨gq⟩ or ⟨gr⟩, there is the special man-in-
the-middle attack raising the public keys to the power either q or r then making the
adversary able to compute K. So, we should not consider reducing the size of q and
r compared to the required size if they were alone. Hence, both q and r should have
at least 256 bits, making n of 512 bits.
If only n is known and hard to factor, one problem is that n should be really big, i.e.
at least 2048 bits. There is no complexity advantage either.
If n is unknown, we have problems to sample x and y in Zn so we would need x and
y bigger than n to reduce the possible bias. In addition to this, n is a factor of p− 1
and should not be too small. The ECM algorithm could recover factors less than 256
bits.
Maybe there could be an advantage for compatibility with other applications, but right
now, except to make a midterm exercise, there is no real advantage.



3 Modulo 99 991

We let n = 99 991 and we want to develop arithmetics modulo n with pen-and-paper.

Q.1 Given a decimal number x of 10 digits, develop an algorithm to reduce it modulo n by using
only 2 subtractions and 3 additions of numbers up to 6-digit long. (We take multiplication
by 10 as free.)
HINT: 105 mod 99 991.

We write x = 105a + b with a and b being two 5-digit numbers. We know that
105 mod n = 9 so x ≡ 9a + b (mod n). To multiply by 9, we just shift a with a 0
and we subtract a. That is a subtraction of a 6-digit number to a 5-digit number. We
obtain a 6-digit number that we can add to the 5-digit number b. We obtain a new
6-digit number that we can write 105a′ + b′ with a′ having a single digit and b′ being
a 5-digit number. We can multiply a′ by 9 to obtain a 2-digit number that we can
add to b′. In rare cases, this will still be larger than n and we would have to subtract
n. To subtract n, we can just add 9 and drop the carry which appears in the most
significant digit.

1: write x = 105a+ b with a and b of length 5 digits
2: set c = 10a ▷ shift left and insert a right zero
3: d← c− a ▷ 6-digit minus 5-digit → 6-digit
4: y ← b+ d ▷ 5-digit plus 6-digit → 6-digit
5: write y = 105a′ + b′ with b′ of 5 digits ▷ a′ is a single digit
6: set c′ = 10a′ ▷ shift left and insert a right zero
7: d′ ← c′ − a′ ▷ 2-digit minus 1-digit → 2-digit
8: z ← b′ + d′ ▷ 5-digit plus 2-digit → 5-digit
9: if z < n then return z

10: w ← z + 9 ▷ 5-digit plus 1-digit → 6-digit
11: drop the most significant bit of w to get v
12: return v

Q.2 Factor n− 1 as a product of prime numbers.

We have n− 1 = 2 · 32 · 5 · 11 · 101.

Q.3 How would you verify that n is prime? Estimate the complexity.

We can run the Miller-Rabin test: pick a random b ∈ {1, . . . , n − 1}, raise it to the
power n−1

2 = 49 995, and check that it is neither 1 nor −1 modulo n. In binary,
49 995 is 1100 0011 0100 1011. Hence, this means 15 squares and 7 multiplications
using the square-and-multiply algorithm. Assuming we reduce modulo n after each
square/multiplication, we obtain 22 square/multiplications of 5-digit numbers and
22 modulo n reductions of a 10-digit number for each b trial.
Note: the square-and-multiply algorithm which was seen in class uses 16 squares and
8 multiplications. However, the first square is squaring 1 and the first multiplication
is multiplying by 1. So we can optimize the algorithm to save one quare and one
multiplication.
Enumerating all prime numbers less than 316 (the floor of

√
n) and trying to divide

n by them could also be a solution. There are only 65 prime numbers to try...



Q.4 How to check if x has a square root modulo n, and how to find one when it exists? Estimate
the complexity.

If x mod n = 0, it has a square root and it is 0. Otherwise, x is in Z∗
n and we know

that it has a square root if and only if x
n−1
2 mod n = 1. That is because n is prime.

To find one when it exists, since n mod 4 = 3, we can compute x
n+1
4 mod n. We

have n+1
4 = 24998 which is 110 0001 1010 0110 in binary.

To check quadratic residuosity takes 22 square/multiplications and modulo opera-
tions. To compute the square root takes 21 square/multiplications and modulo oper-
ations. If we need to do both, we would rather directly apply the square root algorithm
and verifies that it gives a square root in the end. This verification is only one mul-
tiplication and modulo operation.


