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– duration: 3h00
– no documents allowed, except one 2-sided sheet of handwritten notes
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade
– answers should not be written with a pencil

The exam grade follows a linear scale in which each question has the same weight.

1 Mersenne Cryptosystem

The following exercise is inspired from A New Public-Key Cryptosystem via
Mersenne Numbers by Aggarwal, Joux, Prakash, and Santha, published in proceed-
ings of CRYPTO 2018.

A Mersenne number is an integer of the form p = 2n − 1. When it is prime, it is called a
Mersenne prime. There exists a few known large Mersenne primes such as p = 2756 839 − 1.

In this exercise, we fix n such that p = 2n − 1 is prime. Given an integer x, we denote by
HW(x) the Hamming weight of the binary representation of x mod p (i.e. the number of bits
which are equal to 1 once x has been reduced modulo p).

Q.1 For any list (s1, . . . , sk) of non-negative integers (not necessarily bounded by n), prove
that HW(2s1 + · · ·+ 2sk) ≤ k.

Since p = 2n − 1, we have 2n ≡ 1 (mod p) so 2i ≡ 2i mod n (mod p). Thus, we
assume without loss of generality that every si is in the range {0, . . . , n− 1}.
If there is no repetition in the list,

(∑k
i=1 2

si
)
mod p has as a binary representation

a bit string with 1 set at positions corresponding to every si and 0 set at positions
elsewhere. So, the result is quite clear. What is tricky is to prove the result with
repetitions.
We prove the result by induction on k.
For k = 0, this is quite clear.
Assuming the result is proven for k = κ− 1, κ > 0, we prove it for k = κ as follows.
If there is no repetition, the result is proven with the previous argument.
Otherwise, say si = sj for some specific i and j. Since the result does not depend on
the order of the indices, let us assume without loss of generality that i = k − 1 and
j = k. We have 2si + 2sj = 2sj+1. So, the result for (s1, . . . , sk) is equivalent to the
result for (s1, . . . , sk−2, sk+1) which has length κ−1, so HW(2s1 + · · ·+2sk) ≤ κ−1,
due to the induction assumption. Since κ− 1 ≤ κ, this proves the induction.



Q.2 For any integer A and B, prove that HW(A + B) ≤ HW(A) + HW(B) and HW(AB) ≤
HW(A)× HW(B).

We write (a1, . . . , aα) the list of bit positions (without repetition) of A mod p which
have a bit set to 1. We have A mod p =

∑α
i=1 2

ai and HW(A) = α. Similarly,

B mod p =
∑β

i=1 2
bi and HW(B) = β.

We have A + B ≡
∑α

i=1 2
ai +

∑β
i=1 2

bi (mod p) which corresponds to the list
(a1, . . . , aα, b1, . . . , bβ) of length α+ β. Due to the previous question, HW(A+B) ≤
α+ β = HW(A) + HW(B).
Similarly, AB ≡

∑
i,j 2

ai+bj (mod p) which corresponds to the list (ai + bj)i,j of
size αβ. Hence, HW(AB) ≤ αβ = HW(A)× HW(B).

Q.3 For X ∈ Zp uniformly distributed and a constant integer s, give the distribution of
HW(X ⊕ Y ) where Y = (X + 2s) mod p. (Here, ⊕ is the bitwise exclusive or of the

modulo p binary representation.) Namely, prove that Pr[HW(X ⊕ Y ) = i] = 2n−i

p for
i = 1, . . . , n.

HINT: reduce to the s = 0 case.

We observe that the Z 7→ (Z2−s) mod p function is actually a circular rotation of
the bits of Z mod p by s positions to the right. Hence,

HW(X ⊕ Y ) = HW(((X2−s) mod p)⊕ ((Y 2−s) mod p))

By setting X ′ = (X2−s) mod p and Y ′ = (Y 2−s) mod p = (X ′+1) mod p, we reduce
to the s = 0 case.
Adding 1 to X affects the i least significant bits if and only if the binary representa-
tion of X ends by 011 · · · 1 with i − 1 tailing 1’s. This can only be for i = 1, . . . , n.
The number of such X in Zp is 2n−i. Hence, Pr[HW(X ⊕ Y ) = i] = 2n−i

p ≈ 2−i for
i = 1, . . . , n.
There was a little mistake in this question: if X = 01 · · · 1, then Y = 10 · · · 0 and
X⊕Y = 1 · · · 1 but HW(1 · · · 1) = 0 by definition, due to the modulo p reduction. The
result is correct for Pr[dH(X,Y ) = i] with dH(X,Y ) being the Hamming distance
between the modular reductions of X and Y , but when the ⊕ is done before the
reduction, the probability should restrict to i = 1, . . . , n− 1.

Q.4 For X ∈ Zp uniformly distributed and a constant δ such that HW(δ) = k, we let Y =

(X + δ) mod p. Prove that Pr[HW(X ⊕ Y ) ≥ i] ≤ k22−
i
k .

HINT: set δ =
∑k

i=1 2
si , X0 = X, and Xi = (Xi−1 + 2si) mod p.



Clearly, every Xi is uniformly distributed in Zp, and Xk = Y . We have HW(X⊕Y ) ≤∑k
i=1 HW(Xi−1 ⊕ Xi), by triangular inequality. If HW(X ⊕ Y ) ≥ i, it must be the

case that there is one index i′ such that HW(Xi′−1⊕Xi′) ≥ i
k . Thanks to the previous

question, we know that

Pr

[
HW(Xi′−1 ⊕Xi′) ≥

i

k

]
=

n∑
j=⌈ i

k
⌉

2n−j

p
≤

+∞∑
j=⌈ i

k
⌉

2n−j

p
= 2

2n−⌈ i
k
⌉

p
≤ 2

2n−
i
k

p

So,

Pr[HW(X ⊕ Y ) ≥ i] ≤
k∑

i′=1

Pr

[
HW(Xi′−1 ⊕Xi′) ≥

i

k

]
≤ k × 2

2n−
i
k

p
≤ k22−

i
k

where we used 2n ≤ 2p.
We note that there is a better bound in the original paper, but it is harder to obtain.

Q.5 Given a security parameter λ, we define some parameters h, n, p such that h = λ, 10h2 ≤
n ≤ 16h2, p = 2n − 1, and p prime. Using these parameters, a key generation algorithm
Gen(h, n, p) first picks at random F,G,R ∈ Zp such that HW(F ) = HW(G) = h. Then,
it sets T = (FR +G) mod p, pk = (R, T ), and sk = F . The output is pk and sk. Moving
ahead, we define a cryptosystem with Gen as a key pair generator. We consider the problem
of winning in the following game (where the winning condition is missing):

Input: h, p
1: pick (F,G,R) ∈ Z3

p satisfying HW(F ) = HW(G) = h uniformly
2: T ← (FR+G) mod p
3: F ′ ← A(h, p,R, T )
4: return 1win

Write down the game defining security against key recovery under chosen plaintext at-
tacks and define the winning condition in the above game so that the two games become
equivalent.

No matter what the encryption and decryption algorithms are, the adversary has
input pk and no oracle. (Chosen plaintext encryption is done by the adversary using
the public key.)

Input: h, p
1: (pk, sk)← Gen(h, p)
2: sk′ ← A(h, p, pk)
3: return 1sk′=sk

The winning condition in the proposed game is F = F ′. It makes the two games
identical but with notations.

Q.6 We assume an efficient encoding algorithm E mapping a message m in a message domain
to E(m) ∈ Zp and an efficient decoding algorithm D such that D(E(m) ⊕ e) = m for
any message m and any e ∈ Zp satisfying HW(e) ≤ τ , for a given threshold τ . We define
the encryption of m as follows: we pick A, B1, B2 in Zp satisfying HW(A) = HW(B1) =
HW(B2) = h uniformly, then C1 = (AR+B1) mod p and C2 = ((AT+B2) mod p)⊕E(m),



and output ct = (C1, C2). The decryption of ct is m′ = D(((FC1) mod p) ⊕ C2). Prove
that the cryptosystem is correct but for some probability up to ε to upper bound based
on h, p, and τ .

(We omit the modulo p reductions in this question for more readability.) If the en-
cryption was honestly done from a honestly generated key, we have C1 = AR +B1,
y = AT + B2, and C2 = y ⊕ E(m). Furthermore, T = FR + G in key generation.
Hence, the decryption computes x = FC1 = F (AR + B1) = AFR + FB1. Further-
more, y = A(FR+G)+B2 = AFR+AG+B2. So, if we define X = AFR, δ1 = FB1,
and δ2 = AG+B2, we have HW(x⊕ y) ≤ HW(X ⊕ (X + δ1)) +HW(X ⊕ (X + δ2)),
by triangular inequality.
Due to the properties of the Mersenne numbers, we have HW(δ1) ≤ h2 and HW(δ2) ≤
h2 + h. Due to a previous question with k = h2+h

2 , we have

Pr[HW(x⊕ y) ≥ τ ] ≤ 2k22−
τ
k = k23−

τ
k = (h2 + h)2

2− 2τ
h2+h

We can thus set ε = (h2+h)2
2− 2τ

h2+h . Except with probability ε, we have HW(x⊕y) <
τ so decoding x⊕ C2 is just decoding x⊕ y ⊕ E(m), which is close enough to E(m).
Hence, it gives m.



2 Nonce Repetition in ML-DSA

We recall the ML-DSA signature algorithm as seen in class. We use

q = 8380 417 = 213 × 3× 11× 31 + 1

Rq = Zq[X]/(X256 + 1), and some parameters k and ℓ (say for example k = ℓ = 4). We use a
hash function H with range in the set of small elements of Rq. We also define a function round
from Zq to Zq (that we extend to a function from Ri

q to Ri
q by applying to each coefficient)

which rounds a modulo-q residue to the nearest one which is ending by ℓ zero bits.

– To generate a key pair, we pick A ∈ Rk×ℓ
q uniformly and s1 ∈ Rℓ

q small. We set t1 =
round(As1). Finally, sk = s1 and pk = (A, t1).

– To sign a message M , we compute µ = H(0‖M), we pick a nonce y ∈ Rℓ
q small, we set

w = round(Ay), c = H(µ,w), z = y + cs1, and the signature is σ = (c, z).
– To verify a signature σ for M , we check that z is small. We compute µ and w≈ = Az−ct1.

We check that c = H(µ, round(w≈)).

Q.1 Given two different signed messages which are using the same nonce, show how to do a
key recovery attack.

Given two signed messages (M, c, z) and (M ′, c′, z′) using the same y′ = y, we have
z = y + cs1 and z′ = y + c′s1 so s1 =

z′−z
c′−c which yields the secret key.

Q.2 Given a collection of n signed messages in which two are using the same nonce, give an
algorithm to identify those two signed messages and analyze the complexity.

Let (Mi, ci, zi) be the ith signed message, yi be the used nonce, and µi and wi being
the intermediate computations. We have that yi = yj implies wi = wj but ci and cj
are the result of hashing the message with it so the nonce repetition is not directly
visible from the signature.
What we can do is to apply the previous attack for every pair (i, j) then to check if the

recovered s1 satisfies t1 = round(As1). The complexity is equivalent to n2

2 operations
s1 7→ round(As1).

Q.3 What is the improvement about nonce-misuse issues compared to DSA or ECDSA?

In DSA or ECDSA, one element is a deterministic function of the nonce so we can
detect a nonce reuse in quasi linear time using a dictionary. The complexity to find
a repetition in a list of n signed messages is thus much lower.



3 Machine-Readable Travel Documents

We recall the principle of machine-readable travel documents (MRTD). If a holder shows the
opened MRTD to a reader, the reader can optically read a machine-readable zone (MRZ).
It contains some information which is used as a password. It consists of: a serial number
(8 upper-case alphanumerical characters), a date of birth, an expiration date. Given this
information, the reader and the NFC chip can run a password authenticated key exchange
(PAKE) and open a secure communication channel. Then, the chip provides the reader with
the mandatory elements: a digital copy of the MRZ (called DG1), a picture to be used as
a model for facial recognition (called DG2), an element SOD. The SOD includes the list of
the hash of each DGi which is present in the chip and requires passive authentication, the
signature of this list by the issuer, and the certificate of the issuer. The MRZ contains other
information such as the name of the holder, their nationality and their gender.

Q.1 What is the difference between the digital image in DG2 and a regular digital picture?

The image in DG2 is optimized for automated facial recognition. The photoshoot-
ing is made with a good equipment (camera and flash), optimized enlightement, no
color, and drastic requirements (such as no glasses, no hat, no smile). Compared to
Instagram pictures, DG2 can recognize a face much better.

Q.2 Compared to traditional travel documents, explain what the SOD leaks.

SOD leaks digital evidence. A digital signature is an undeniable evidence, contrarily
to a photocopy of a traditional passport, because photocopies can easily be forged. This
evidence can be used to prove the official name, gender, date-of-birth, and nationality
of the person corresponding to a digital picture. Once published by an adversary, it
cannot be denied.
Besides, SOD also leaks the hash of DGi which are not readable without terminal au-
thentication. This can contain more private objects which are not necessarily printed
in the passport.

Q.3 Estimate the entropy (in bits) of the password.

Given that a passport is typically valid for 10 years, the expiration date has only
3650 ≈ 212 possibilities. Assuming we can reliably estimate the age of a person with
a ±5years margin, the entropy of the date of birth is also of 12 bits. The alphabet
for the serial number has 26 + 10 characters so we have up to 368 ≈ 241. The total
entropy is thus bounded by 65 bits.
However, with a serial number having 2 digits, then 2 letters, then 4 digits, the
entropy of the serial number becomes 29 so the total entropy is now of 43 bits.
If we already know the person and if their date of birth can be easily found based on
public information such as Wikipedia, the entropy estimate drops by 12 bits.

Q.4 Compare the security of the password with the one of a regular password chosen by a
human user. What is the risk of a disclosed MRTD password?



Compared to the entropy of a human-chosen password, the entropy is not too bad.
However, the information based on which the MRZ password is made is often used
and may be collected by many organizations and treated without care. For instance,
people often need to show their passport at the check-in counter in a hotel and the
hotel typically collect all information. They can be hacked and the information ends
up on the darknet. The exposure of human-chosen passwords is normally much lower.
If the MRTD password is known, we can make sensors to detect the presence of this
MRTD hence track a person by their hidden passport.


