

Cryptography and Security — Midterm Exam

Serge Vaudenay

15.10.2025

- duration: 1h45
- **no documents** allowed, except one 2-sided sheet of handwritten notes
- a pocket calculator is allowed
- communication **devices are not allowed**
- the exam invigilators will **not answer** any technical question during the exam
- readability and style of writing will be part of the grade
- answers should **not be written with a pencil**

1 Nonce-Based Multi-Use Perfect Secrecy

We define a nonce-based encryption scheme as follows: given a plaintext X , a key K , and an additional input called *nonce* N , the ciphertext Y is obtained by $Y = \text{Enc}(K, N, X)$. Decryption takes input K, N, Y and returns $X = \text{Dec}(K, N, Y)$. It is forbidden to use the same nonce N more than once to encrypt. Furthermore, we do not assume that the nonce is private (hence, the adversary has access to Y and N). The probability distributions of K, N and X are supposed to be independent. We assume that X, Y , and N belong to the same domain \mathbf{F} , which is a finite field. We assume that the distribution of K is determined by the encryption system. We say that the encryption system is *1-time secure* if for any $x, x', y, n \in \mathbf{F}$, we have

$$\Pr[\text{Enc}(K, n, x) = y] = \Pr[\text{Enc}(K, n, x') = y]$$

Q.1 In this question only, we forget about the nonce N (i.e. $Y = \text{Enc}(K, X)$). Recall the definition of perfect secrecy and prove that the above notion (without n) is equivalent when the support of X is \mathbf{F} .

HINT: Show that 1-time security implies $\forall x, x', y \quad \Pr[Y = y | X = x] = \Pr[Y = y | X = x']$.

Q.2 Propose an efficient nonce-based encryption system which is 1-time secure.

Q.3 We say that the encryption system is 2-time secure if for any $x_1, x_2, x'_1, x'_2, y_1, y_2, n_1, n_2 \in \mathbf{F}$ such that $n_1 \neq n_2$, we have

$$\Pr[\text{Enc}(K, n_1, x_1) = y_1, \text{Enc}(K, n_2, x_2) = y_2] = \Pr[\text{Enc}(K, n_1, x'_1) = y_1, \text{Enc}(K, n_2, x'_2) = y_2]$$

Prove that 2-time security implies that the key space is at least as large as \mathbf{F}^2 .

HINT: Use $\text{Enc}'(K, (n_1, n_2), (x_1, x_2)) = (\text{Enc}(K, n_1, x_1), \text{Enc}(K, n_2, x_2))$.

Q.4 Propose a 2-time secure encryption system. (Prove that it is secure.)

Q.5 Propose a definition for d -time security and propose a nonce-based system which achieves it.

2 Multiexponentiation

In this exercise, we consider algorithms to compute g^e in an Abelian group G (which uses multiplicative notations). Given an integer e , we denote by $e[i] = \lfloor \frac{e}{2^i} \rfloor \bmod 2$ the i th bit of e (e.g. $e[0]$ is the least significant bit). We denote by $e[j \cdots i]$ the number obtained by concatenating the bits from the j th to the i th. (For instance, for $e = 23 = 10111_2$, we have $e[4 \cdots 0] = 10111_2 = 23$ and $e[3 \cdots 1] = 011_2 = 3$.) We recall the square-and-multiply algorithm from left to right.

$\text{Exp}(g, e)$:

```

1: for  $i = \ell - 1$  down to 0 do
2:   if  $i = \ell - 1$  then
3:      $x \leftarrow 1$ 
4:   else
5:      $x \leftarrow x^2$ 
6:   end if
7:   if  $e[i] = 1$  then
8:      $x \leftarrow x \times g$ 
9:   end if
10: end for
11: return  $x$ 
```

Q.1 Assuming that e is a random string of ℓ bits, what are the average number of squarings and the average number of multiplications in the square-and-multiply algorithm?

Q.2 We now use the so-called 2^w -ary method: we first make a precomputation of all g^b for $b = 0, \dots, 2^w - 1$, we split e in blocks of w bits, then we scan all the blocks from left to right.

Q.2a Fully specify the precomputation algorithm with input g .

Q.2b What is the number of squarings and of multiplications?

Q.2c Fully specify the algorithm to compute g^e using the results of the precomputation.

Q.2d What is the expected number of squarings and of multiplications in this phase?

Q.2e Assuming that ℓ is divisible by w , compute the sum of the total number of squarings and of multiplications in the two phases and compare with the normal square-and-multiply algorithm for $w = 1, 2, 3, 4$ and say for which ℓ which algorithm is better.

Q.3 We now want to compute $g_1^{e_1} \cdots g_k^{e_k}$, where all e_i are written with ℓ bits.

Q.3a What is the expected number of squarings and multiplications if we use the naïve method based on the square-and-multiply algorithm?

Q.3b Inspired by the 2^w -ary method, propose an algorithm based on the precomputation of $T\{b_1, \dots, b_k\} = g_1^{b_1} \cdots g_k^{b_k}$ for all the 2^{kw} possible combinations of blocks. (We assume that g_1, \dots, g_k are available for precomputation.)

Q.3c What is the expected number of squarings and multiplications in each phase? Make a comparison with the naïve algorithm for $k = 2$ as it was done for the $k = 1$ case.